BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18001142)

  • 21. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact?
    Stilwell SN; Bizouarn T; Jackson JB
    Biochim Biophys Acta; 1997 May; 1320(1):83-94. PubMed ID: 9186780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I.
    Birrell JA; King MS; Hirst J
    FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?
    Sherwood S; Hirst J
    Biochem J; 2006 Dec; 400(3):541-50. PubMed ID: 16895522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS; Grivennikova VG; Cecchini G; Vinogradov AD
    FEBS Lett; 2007 Dec; 581(30):5803-6. PubMed ID: 18037377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria.
    Esterházy D; King MS; Yakovlev G; Hirst J
    Biochemistry; 2008 Mar; 47(12):3964-71. PubMed ID: 18307315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations at tyrosine-235 in the mobile loop region of domain I protein of transhydrogenase from Rhodospirillum rubrum strongly inhibit hydride transfer.
    Bizouarn T; Grimley R; Diggle C; Thomas CM; Jackson JB
    Biochim Biophys Acta; 1997 Jul; 1320(3):265-74. PubMed ID: 9230921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the ferricyanide reductase activities of the mitochondrial reduced nicotinamide adenine dinucleotide-ubiquinone reductase (complex I) utilizing arylazido-beta-alanyl NAD+ and arylazido-beta-alanyl NADP+.
    Chen S; Guillory RJ
    J Bioenerg Biomembr; 1985 Feb; 17(1):33-49. PubMed ID: 3921531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes.
    Blaza JN; Serreli R; Jones AJ; Mohammed K; Hirst J
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15735-40. PubMed ID: 25331896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From in silico to in spectro kinetics of respiratory complex I.
    Ransac S; Heiske M; Mazat JP
    Biochim Biophys Acta; 2012 Oct; 1817(10):1958-69. PubMed ID: 22510388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of respiratory complex I.
    Friedrich T
    J Bioenerg Biomembr; 2014 Aug; 46(4):255-68. PubMed ID: 25022766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-linked nicotinamide nucleotide transhydrogenase. Kinetics and regulation of purified and reconstituted transhydrogenase from beef heart mitochondria.
    Enander K; Rydström J
    J Biol Chem; 1982 Dec; 257(24):14760-6. PubMed ID: 7174665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic mechanism of mitochondrial NADH:ubiquinone oxidoreductase interaction with nucleotide substrates of the transhydrogenase reaction.
    Zakharova NV; Zharova TV
    Biochemistry (Mosc); 2002 Dec; 67(12):1395-404. PubMed ID: 12600270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae.
    Velázquez I; Pardo JP
    Arch Biochem Biophys; 2001 May; 389(1):7-14. PubMed ID: 11370674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.