These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 18001515)
41. Change in local environment upon quasicrystallization of Zr-Cu glassy alloys by addition of Pd and Pt. Saida J; Sanada T; Sato S; Imafuku M; Ohnuma M; Ohkubo T; Hono K; Matsubara E J Phys Condens Matter; 2011 May; 23(17):175303. PubMed ID: 21474884 [TBL] [Abstract][Full Text] [Related]
42. In situ synchrotron high-energy X-ray diffraction analysis on phase transformations in Ti-Al alloys processed by equal-channel angular pressing. Liss KD; Whitfield RE; Xu W; Buslaps T; Yeoh LA; Wu X; Zhang D; Xia K J Synchrotron Radiat; 2009 Nov; 16(Pt 6):825-34. PubMed ID: 19844020 [TBL] [Abstract][Full Text] [Related]
43. Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy. Gault B; de Geuser F; Bourgeois L; Gabble BM; Ringer SP; Muddle BC Ultramicroscopy; 2011 May; 111(6):683-9. PubMed ID: 21239117 [TBL] [Abstract][Full Text] [Related]
44. Homogeneous Age-hardening of Large-sized Al-Sc Foams via Micro-alloying with Zr and Ti. Chu X; Wang T; Yang D; Peng X; Hou S; Chen S; Lu G; Jiao M; Wu Y; Rempel AA; Qu W; Li H; Wang H Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541422 [TBL] [Abstract][Full Text] [Related]
45. Effect of Ti Content on the Microstructure and High-Temperature Creep Property of Cast Fe-Ni-Based Alloys with High-Al Content. Subramanian GO; Jang C; Shin JH; Jeong C Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33375287 [TBL] [Abstract][Full Text] [Related]
46. The first-principles study of interfacial bonding strength and segregation behavior of alloyed elements at the η(MgZn Gao Q; Qiao G; Wang W; Ge Y; Ren J; Li W; Yang P; Lu X; Qiao J Phys Chem Chem Phys; 2024 Jun; 26(24):17240-17254. PubMed ID: 38856165 [TBL] [Abstract][Full Text] [Related]
47. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix. Morley A; Sha G; Hirosawa S; Cerezo A; Smith GD Ultramicroscopy; 2009 Apr; 109(5):535-40. PubMed ID: 19028011 [TBL] [Abstract][Full Text] [Related]
48. Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) Alloys for the Hydrogen Separation Membrane. Nayebossadri S; Speight JD; Book D ACS Appl Mater Interfaces; 2017 Jan; 9(3):2650-2661. PubMed ID: 27992165 [TBL] [Abstract][Full Text] [Related]
49. The precession technique in electron diffraction and its application to structure determination of nano-size precipitates in alloys. Gjønnes J; Hansen V; Kverneland A Microsc Microanal; 2004 Feb; 10(1):16-20. PubMed ID: 15306062 [TBL] [Abstract][Full Text] [Related]
50. Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. Balla VK; Xue W; Bose S; Bandyopadhyay A Acta Biomater; 2009 Sep; 5(7):2800-9. PubMed ID: 19398221 [TBL] [Abstract][Full Text] [Related]
51. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures. Wang Z; Fang X; Li H; Liu W Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016 [TBL] [Abstract][Full Text] [Related]
52. Synthesis, structural characterization, and theoretical investigation of compounds containing an Al-O-M-O-Al (M=Ti, Zr) core. Mandal SK; Gurubasavaraj PM; Roesky HW; Oswald RB; Magull J; Ringe A Inorg Chem; 2007 Sep; 46(18):7594-600. PubMed ID: 17685512 [TBL] [Abstract][Full Text] [Related]
53. Structure studies of ball-milled ZrCuAl, NiTiZrCu and melt-spun ZrNiTiCuAl alloys. Dutkiewicz J; Kubícek M; Pastrnák M; Maziarz W; Lejkowska M; Czeppe T; Morgiel J J Microsc; 2006 Sep; 223(Pt 3):268-71. PubMed ID: 17059547 [TBL] [Abstract][Full Text] [Related]
54. Effect of Zr and Ti Addition and Aging Treatment on the Microstructure and Tensile Properties of Al-2%Cu-Based Alloys. Samuel E; Nabawy AM; Samuel AM; Doty HW; Songmene V; Samuel FH Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806637 [TBL] [Abstract][Full Text] [Related]
55. Electron probe and auger electron microprobe characterization of modified Cu-based amorphous alloys. Szummer A; Janik-Czachor M; Mack P; Pisarek M Microsc Microanal; 2003 Aug; 9(4):359-67. PubMed ID: 12901771 [TBL] [Abstract][Full Text] [Related]
56. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation. Highfield J; Liu T; Loo YS; Grushko B; Borgna A Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363 [TBL] [Abstract][Full Text] [Related]
57. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling. Dutkiewicz J; Lityńska L; Maziarz W; Kocisko R; Molnarová M; Kovácová A Micron; 2009 Jan; 40(1):1-5. PubMed ID: 18614372 [TBL] [Abstract][Full Text] [Related]
58. Moiré fringe analysis of small precipitates in melt-spun titanium-silicon alloys. Chumbley LS; Fraser HL J Electron Microsc Tech; 1990 Jan; 14(1):46-51. PubMed ID: 2299418 [TBL] [Abstract][Full Text] [Related]
59. In vitro and in vivo studies of alkali- and heat-treated Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta alloys for orthopedic implants. Tamilselvi S; Raghavendran HB; Srinivasan P; Rajendran N J Biomed Mater Res A; 2009 Aug; 90(2):380-6. PubMed ID: 18523948 [TBL] [Abstract][Full Text] [Related]
60. Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys. Ruan S; Torres KL; Thompson GB; Schuh CA Ultramicroscopy; 2011 Jul; 111(8):1062-72. PubMed ID: 21740869 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]