These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18001880)

  • 1. Accuracy of local conduction velocity determination from non-fractionated cardiac activation signals.
    Wiener T; Thurner T; Prassl AJ; Plank G; Hofer E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():27-30. PubMed ID: 18001880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
    Wiley JJ; Ideker RE; Smith WM; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2468-77. PubMed ID: 16085679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation calculations of cardiac virtual cathode effects.
    Barach JP
    Comput Biomed Res; 1996 Apr; 29(2):77-84. PubMed ID: 8785912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode for recording direction of activation, conduction velocity, and monophasic action potential of myocardium.
    Horner SM; Vespalcova Z; Lab MJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1917-27. PubMed ID: 9139979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual electrode effects around an artificial heterogeneity during field stimulation of cardiac tissue.
    Woods MC; Sidorov VY; Holcomb MR; Beaudoin DL; Roth BJ; Wikswo JP
    Heart Rhythm; 2006 Jun; 3(6):751-2. PubMed ID: 16731485
    [No Abstract]   [Full Text] [Related]  

  • 7. Simulation and experimental studies of the factors influencing the frequency spectrum of cardiac extracellular waveforms.
    Joly D; Savard P; Roberge FA; Vermeulen M; Shenasa M
    J Electrocardiol; 1990 Apr; 23(2):109-25. PubMed ID: 2341814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generic ionic model of cardiac action potentials.
    Guo T; Abed AA; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1465-8. PubMed ID: 21096358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oblique propagation of activation allows the detection of uncoupling microstructures from cardiac near field behavior.
    Hofer E; Wiener T; Prassl AJ; Thurner T; Plank G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():415-8. PubMed ID: 18001978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold reduction with biphasic defibrillator waveforms. Role of excitation channel recovery in a computer model of the ventricular action potential.
    Jones JL; Jones RE
    J Electrocardiol; 1990; 23 Suppl():30-5. PubMed ID: 2090758
    [No Abstract]   [Full Text] [Related]  

  • 12. A 2D-computer model of atrial tissue based on histographs describes the electro-anatomical impact of microstructure on endocardiac potentials and electric near-fields.
    Campos FO; Wiener T; Prassl AJ; Ahammer H; Plank G; Weber Dos Santos R; Sánchez-Quintana D; Hofer E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2541-4. PubMed ID: 21096441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation.
    Lorange M; Gulrajani RM
    J Electrocardiol; 1993 Oct; 26(4):245-61. PubMed ID: 8228715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel interpolation method for electric potential fields in the heart during excitation.
    Ni Q; MacLeod RS; Lux RL; Taccardi B
    Ann Biomed Eng; 1998; 26(4):597-607. PubMed ID: 9662152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of damped propagation in excitable cardiac tissue.
    Sidorov VY; Aliev RR; Woods MC; Baudenbacher F; Baudenbacher P; Wikswo JP
    Phys Rev Lett; 2003 Nov; 91(20):208104. PubMed ID: 14683402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials.
    Colli-Franzone P; Guerri L; Taccardi B
    Math Biosci; 2004; 188():191-205. PubMed ID: 14766102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular mechanisms of ventricular bipolar electrograms showing double and fractionated potentials.
    Ino T; Fishbein MC; Mandel WJ; Chen PS; Karagueuzian HS
    J Am Coll Cardiol; 1995 Oct; 26(4):1080-9. PubMed ID: 7560602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into very slow conduction in branching cardiac tissue: a model study.
    Kucera JP; Rudy Y
    Circ Res; 2001 Oct; 89(9):799-806. PubMed ID: 11679410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of cardiac conduction velocities using small data sets.
    Fitzgerald TN; Rhee EK; Brooks DH; Triedman JK
    Ann Biomed Eng; 2003 Mar; 31(3):250-61. PubMed ID: 12680723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of cardiac propagation: effects of fiber rotation, intramural conductivity, and optical mapping.
    Ghazanfari A; Rodriguez MP; Vigmond E; Nygren A
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2041-8. PubMed ID: 24956621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.