BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18001910)

  • 1. 3D visualization of cardiac anatomical MRI data with para-cellular resolution.
    Goodyer CE; Grau V; Mansoori T; Schneider JE; Brodlie KW; Kohl P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():147-51. PubMed ID: 18001910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for three-dimensional visualization using high-resolution MRI of the temporomandibular joint.
    Hayakawa Y; Kober C; Otonari-Yamamoto M; Otonari T; Wakoh M; Sano T
    Dentomaxillofac Radiol; 2007 Sep; 36(6):341-7. PubMed ID: 17699704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A segmentation and tracking system for 4D cardiac tagged MR images.
    Metaxas DN; Axel L; Qian Z; Huang X
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1541-4. PubMed ID: 17946900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High speed image space parallel processing for computer-generated integral imaging system.
    Kwon KC; Park C; Erdenebat MU; Jeong JS; Choi JH; Kim N; Park JH; Lim YT; Yoo KH
    Opt Express; 2012 Jan; 20(2):732-40. PubMed ID: 22274418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21st century.
    Pooh RK; Shiota K; Kurjak A
    Am J Obstet Gynecol; 2011 Jan; 204(1):77.e1-16. PubMed ID: 20974463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in cardiac magnetic resonance imaging of congenital heart disease.
    Driessen MM; Breur JM; Budde RP; van Oorschot JW; van Kimmenade RR; Sieswerda GT; Meijboom FJ; Leiner T
    Pediatr Radiol; 2015 Jan; 45(1):5-19. PubMed ID: 25552386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI visible Fe
    Chen L; Lenz F; Alt CD; Sohn C; De Lancey JO; Brocker KA
    Int Urogynecol J; 2017 Aug; 28(8):1131-1138. PubMed ID: 28124074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Utility of Medical Imaging Displaying Method in 3D Magnetic Resonance Imaging].
    Takahashi J
    Igaku Butsuri; 2015; 35(3):247-55. PubMed ID: 27125132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels.
    Unterhinninghofen R; Ley S; Ley-Zaporozhan J; von Tengg-Kobligk H; Bock M; Kauczor HU; Szabó G; Dillmann R
    Acad Radiol; 2008 Mar; 15(3):361-9. PubMed ID: 18280934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D thermal medical image visualization tool: Integration between MRI and thermographic images.
    Abreu de Souza M; Chagas Paz AA; Sanches IJ; Nohama P; Gamba HR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5583-6. PubMed ID: 25571260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D MRI heart segmentation of mouse embryos.
    Zouagui T; Chereul E; Janier M; Odet C
    Comput Biol Med; 2010 Jan; 40(1):64-74. PubMed ID: 19939358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging.
    Sørensen TS; Pedersen EM; Hansen OK; Sørensen K
    Cardiol Young; 2003 Oct; 13(5):451-60. PubMed ID: 14694940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of neurovascular compression in facial neuralgia patients by 3D high-resolution MRI and fusion technology.
    Guo ZY; Chen J; Yang G; Tang QY; Chen CX; Fu SX; Yu D
    Asian Pac J Trop Med; 2012 Dec; 5(12):1000-3. PubMed ID: 23199722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual neuroendoscopy: MRI-based three-dimensional visualization of the cranial nerves in the posterior cranial fossa.
    Tanrikulu L; Hastreiter P; Richter G; Doerfler A; Naraghi R
    Br J Neurosurg; 2008 Apr; 22(2):207-12. PubMed ID: 18348015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution reconstruction using cross-scale self-similarity in multi-slice MRI.
    Plenge E; Poot DH; Niessen WJ; Meijering E
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):123-30. PubMed ID: 24505752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface reconstructions of foetal brain abnormalities using ultrafast steady state 3D acquisitions.
    Jarvis DA; Armitage P; Dean A; Griffiths PD
    Clin Radiol; 2014 Oct; 69(10):1084-91. PubMed ID: 25062925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigating and visualizing three-dimensional data sets.
    John NW; McCloy RF
    Br J Radiol; 2004; 77 Spec No 2():S108-13. PubMed ID: 15677352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotropic reconstruction of a 4-D MRI thoracic sequence using super-resolution.
    Van Reeth E; Tan CH; Tham IW; Poh CL
    Magn Reson Med; 2015 Feb; 73(2):784-93. PubMed ID: 24478231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional visualization of intracranial tumors with cortical surface and vasculature from routine MR sequences.
    Neyaz Z; Phadke RV; Singh V; Godbole C
    Neurol India; 2017; 65(2):333-340. PubMed ID: 28290396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures.
    Jung BA; Kreher BW; Markl M; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S158-64. PubMed ID: 16564182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.