BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18001979)

  • 1. Behaviour of the purkinje system during defibrillation-strength shocks.
    Boyle PM; Deo M; Vigmond EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():419-22. PubMed ID: 18001979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks.
    Boyle PM; Deo M; Plank G; Vigmond EJ
    Ann Biomed Eng; 2010 Feb; 38(2):456-68. PubMed ID: 19876737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a computer model to investigate sawtooth effects in the Purkinje system.
    Vigmond EJ; Clements C
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):389-99. PubMed ID: 17355050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks.
    Dosdall DJ; Cheng KA; Huang J; Allison JS; Allred JD; Smith WM; Ideker RE
    Heart Rhythm; 2007 Jun; 4(6):758-65. PubMed ID: 17556199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmogenic mechanisms of the Purkinje system during electric shocks: a modeling study.
    Deo M; Boyle P; Plank G; Vigmond E
    Heart Rhythm; 2009 Dec; 6(12):1782-9. PubMed ID: 19959130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sotalol and acute ventricular dilatation on action potential duration and dispersion of repolarization after defibrillation shocks.
    Kirchhof P; Milberg P; Eckardt L; Breithardt G; Haverkamp W
    J Cardiovasc Pharmacol; 2003 Apr; 41(4):640-8. PubMed ID: 12658067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ventricular myocardium characteristics on the defibrillation threshold.
    Qian L; Wang J; Jin L; Song B; Wu X
    Technol Health Care; 2018; 26(S1):241-248. PubMed ID: 29710752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defibrillation of the heart: insights into mechanisms from modelling studies.
    Trayanova N
    Exp Physiol; 2006 Mar; 91(2):323-37. PubMed ID: 16469820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Purkinje system in cardiac arrhythmias.
    Deo M; Boyle P; Plank G; Vigmond E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():149-52. PubMed ID: 19162615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of defibrillation shock energy and timing on 3-D computer model of heart.
    Province RA; Fishler MG; Thakor NV
    Ann Biomed Eng; 1993; 21(1):19-31. PubMed ID: 8434817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards predictive modelling of the electrophysiology of the heart.
    Vigmond E; Vadakkumpadan F; Gurev V; Arevalo H; Deo M; Plank G; Trayanova N
    Exp Physiol; 2009 May; 94(5):563-77. PubMed ID: 19270037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated approach for the study of anatomical variability in the cardiac Purkinje system: from high resolution MRI to electrophysiology simulation.
    Bordas R; Grau V; Burton RB; Hales P; Schneider JE; Gavaghan D; Kohl P; Rodriguez B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6793-6. PubMed ID: 21095842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
    Colatsky TJ; Tsien RW
    J Physiol; 1979 May; 290(2):227-52. PubMed ID: 469754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reduced differential model of the electrical activity of cardiac Purkinje fibres.
    Djabella K; Sorine M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4167-70. PubMed ID: 17945829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network.
    Landajuela M; Vergara C; Gerbi A; Dedè L; Formaggia L; Quarteroni A
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2984. PubMed ID: 29575751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential features of endocardial and myocardial morphology: SEM and TEM studies.
    Koprla EC; Nemeséri L
    Acta Physiol Hung; 1984; 64(1):65-79. PubMed ID: 6485820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the Purkinje fibres to the ventricle: One dimensional computer simulation for the healthy and failing heart.
    Li J; Logantha SJ; Yanni J; Cai X; Dobrzynski H; Hart G; Boyett MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():34-7. PubMed ID: 26736194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.
    Dillon SM
    Circ Res; 1991 Sep; 69(3):842-56. PubMed ID: 1873877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.