These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18002128)

  • 1. Analysis of pressure losses in the hemodialysis graft vascular circuit using finite element analysis.
    Beasley MP; Conrad SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():998-1001. PubMed ID: 18002128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model for pressure losses in the hemodialysis graft vascular circuit.
    Jones SA; Jin S; Kantak A; Bell DA; Paulson WD
    J Biomech Eng; 2005 Feb; 127(1):60-6. PubMed ID: 15868789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device.
    McNally A; Akingba AG; Sucosky P
    J Vasc Access; 2018 Sep; 19(5):446-454. PubMed ID: 30192183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing radiocephalic wrist arteriovenous fistulas of obtuse anastomosis using computational fluid dynamics and clinical application.
    Lee J; Kim S; Kim SM; Song R; Kim HK; Park JS; Park SC
    J Vasc Access; 2016 Nov; 17(6):512-520. PubMed ID: 27791257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2011 May; 22(3):883-7. PubMed ID: 21558923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical protocol. A phase IIb, randomized, multicenter, double-blind study of the efficacy and safety of Trinam (EG004) in stenosis prevention at the graft-vein anastomosis site in dialysis patients.
    Fuster V; Charlton P; Boyd A
    Hum Gene Ther; 2001 Nov; 12(16):2025-7. PubMed ID: 11727735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of luminal diameters on flow surveillance of hemodialysis grafts: insights from a mathematical model.
    White JJ; Ram SJ; Jones SA; Schwab SJ; Paulson WD
    Clin J Am Soc Nephrol; 2006 Sep; 1(5):972-8. PubMed ID: 17699315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of stenosis in vascular access grafts.
    Van Tricht I; De Wachter D; Vanhercke D; Tordoir J; Verdonck P
    Artif Organs; 2004 Jul; 28(7):617-22. PubMed ID: 15209853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical test method of cardiovascular and related biomaterials.
    Yokobori AT; Yokobori T
    Biomed Mater Eng; 1991; 1(1):25-43. PubMed ID: 1842508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venous anastomoses for dialysis access--special techniques with the use of E-PTFE vascular prosthesis at the forearm.
    Krönung G; Horch R
    Nihon Geka Hokan; 1990 Mar; 59(2):134-40. PubMed ID: 2130774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a haemodynamic advantage associated with cuffed arterial anastomoses?
    Cole JS; Watterson JK; O'Reilly MJ
    J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Two is better than one": a composite graft made of two different vascular prostheses for urgent hemodialysis access in a troublesome case.
    Agostinucci A; Cecere P; Forneris G; Cumino A; Suita R; Bellan A; Trogolo M; Ferrero F
    Ann Vasc Surg; 2015 Jul; 29(5):1016.e7-1016.e10. PubMed ID: 25725272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of stenosed femoral artery with symmetric 2-way bypass graft.
    Qiao AK; Zeng YJ; Xu XH
    Biomed Mater Eng; 2004; 14(2):167-74. PubMed ID: 15156107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel modular anastomotic valve device for hemodialysis vascular access: preliminary computational hemodynamic assessment.
    McNally A; Akingba AG; Robinson EA; Sucosky P
    J Vasc Access; 2014; 15(6):448-60. PubMed ID: 25198822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses.
    Bonert M; Myers JG; Fremes S; Williams J; Ethier CR
    Ann Biomed Eng; 2002 May; 30(5):599-611. PubMed ID: 12108835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of tapered grafts on hemodynamics and flow rate in dialysis access grafts.
    Krueger U; Huhle A; Krys K; Scholz H
    Artif Organs; 2004 Jul; 28(7):623-8. PubMed ID: 15209854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent flow evaluation of the venous needle during hemodialysis.
    Unnikrishnan S; Huynh TN; Brott BC; Ito Y; Cheng CH; Shih AM; Allon M; Anayiotos AS
    J Biomech Eng; 2005 Dec; 127(7):1141-6. PubMed ID: 16502656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.