BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18002168)

  • 1. Determination of the optimal heating pattern obtained with external planar applicators used for 915 MHz microwave hyperthermia.
    Cresson PY; Dubois L; Pribetich J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1160-3. PubMed ID: 18002168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic temperature controller for multielement array hyperthermia systems.
    Johnson JE; Maccarini PF; Neuman D; Stauffer PR
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1006-15. PubMed ID: 16761827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic-thermal analysis of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors using a human model with blood flow and fat layer.
    Tange Y; Kanai Y; Saitoh Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4368-71. PubMed ID: 19163681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional model on thermal response of skin subject to laser heating.
    Shen W; Zhang J; Yang F
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):115-25. PubMed ID: 16154875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.
    Cheng KS; Dewhirst MW; Stauffer PR; Das S
    Med Phys; 2010 Mar; 37(3):1285-97. PubMed ID: 20384266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions.
    Mohammed Y; Verhey JF
    Biomed Eng Online; 2005 Jan; 4():2. PubMed ID: 15631630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence.
    Arunachalam K; Maccarini PF; Craciunescu OI; Schlorff JL; Stauffer PR
    Phys Med Biol; 2010 Apr; 55(7):1949-69. PubMed ID: 20224154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive thermometry in a reentrant resonant cavity applicator.
    Ishihara Y; Endo Y; Ohwada H; Wadamori N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1487-90. PubMed ID: 18002248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: groundwork for monitoring thermal therapies in the breast.
    Baron P; Deckers R; Knuttel FM; Bartels LW
    NMR Biomed; 2015 Nov; 28(11):1463-70. PubMed ID: 26403166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature simulations in hyperthermia treatment planning of the head and neck region: rigorous optimization of tissue properties.
    Verhaart RF; Rijnen Z; Fortunati V; Verduijn GM; van Walsum T; Veenland JF; Paulides MM
    Strahlenther Onkol; 2014 Nov; 190(12):1117-24. PubMed ID: 25015425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.
    Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.