These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18002187)

  • 1. Real-time simulation for intra-operative navigation in robotic surgery. Using a mass spring system for a basic study of organ deformation.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1237-41. PubMed ID: 18002187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic and nonlinear organ model for control of needle insertion manipulator.
    Kobayashi Y; Onishi A; Hoshi T; Kawamura K; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1242-8. PubMed ID: 18002188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphere-filled organ model for virtual surgery system.
    Suzuki S; Suzuki N; Hattori A; Uchiyama A; Kobayashi S
    IEEE Trans Med Imaging; 2004 Jun; 23(6):714-22. PubMed ID: 15191146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue deformation simulation in virtual surgery using nonlinear finite element method.
    Yan Z; Gu L; Huang P; Lv S; Yu X; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3642-5. PubMed ID: 18002786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer guidance system for single-incision bimanual robotic surgery.
    Carbone M; Turini G; Petroni G; Niccolini M; Menciassi A; Ferrari M; Mosca F; Ferrari V
    Comput Aided Surg; 2012; 17(4):161-71. PubMed ID: 22687053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced da Vinci Surgical System simulator for surgeon training and operation planning.
    Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK
    Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action- and workflow-driven augmented reality for computer-aided medical procedures.
    Navab N; Traub J; Sielhorst T; Feuerstein M; Bichlmeier C
    IEEE Comput Graph Appl; 2007; 27(5):10-4. PubMed ID: 17913019
    [No Abstract]   [Full Text] [Related]  

  • 12. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.
    Visentini-Scarzanella M; Mylonas GP; Stoyanov D; Yang GZ
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):353-60. PubMed ID: 20426007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The foundations of computer assisted surgery].
    Langlotz F; Nolte LP; Tannast M
    Orthopade; 2006 Oct; 35(10):1032-7. PubMed ID: 16924446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image-guided robotic surgery.
    Marescaux J; Solerc L
    Semin Laparosc Surg; 2004 Jun; 11(2):113-22. PubMed ID: 15254650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operability evaluation using an simulation system for gripping motion in robotic tele-surgery.
    Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5106-9. PubMed ID: 19963881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic framework for tracking deformable soft tissue in minimally invasive surgery.
    Mountney P; Lo B; Thiemjarus S; Stoyanov D; Zhong-Yang G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):34-41. PubMed ID: 18044550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic active constraints for hyper-redundant flexible robots.
    Kwok KW; Mylonas GP; Sun LW; Lerotic M; Clark J; Athanasiou T; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):410-7. PubMed ID: 20426014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constrained Point-Based Framework with Efficient Mechanical Interaction for Virtual Surgery.
    Si W; Shan J; Liao X; Wang W; Wang Q; Heng PA
    Stud Health Technol Inform; 2016; 220():367-74. PubMed ID: 27046607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time cutting and suture simulation using hybrid elastic model.
    Zhang J; Gu L; Huang P; Dworzak J; Chen F; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3646-9. PubMed ID: 18002787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.