BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18002210)

  • 21. Validation of radiologists' findings by computer-aided detection (CAD) software in breast cancer detection with automated 3D breast ultrasound: a concept study in implementation of artificial intelligence software.
    van Zelst JC; Tan T; Mann RM; Karssemeijer N
    Acta Radiol; 2020 Mar; 61(3):312-320. PubMed ID: 31324132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study of contrast-enhanced automated acoustic mammography.
    Gaitini D; Rothstein T; Gallimidi Z; Azhari H
    J Ultrasound Med; 2013 May; 32(5):825-33. PubMed ID: 23620325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions.
    Madabhushi A; Metaxas DN
    IEEE Trans Med Imaging; 2003 Feb; 22(2):155-69. PubMed ID: 12715992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CAD in questions/answers Review of the literature.
    Boyer B; Balleyguier C; Granat O; Pharaboz C
    Eur J Radiol; 2009 Jan; 69(1):24-33. PubMed ID: 18977103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interobserver reliability of automated breast volume scanner (ABVS) interpretation and agreement of ABVS findings with hand held breast ultrasound (HHUS), mammography and pathology results.
    Golatta M; Franz D; Harcos A; Junkermann H; Rauch G; Scharf A; Schuetz F; Sohn C; Heil J
    Eur J Radiol; 2013 Aug; 82(8):e332-6. PubMed ID: 23540947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new methodology based on q-entropy for breast lesion classification in 3-D ultrasound images.
    Rodrigues PS; Giraldi GA; Provenzano M; Faria MD; Chang RF; Suri JS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1048-51. PubMed ID: 17945617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deformable Mapping Method to Relate Lesions in Dedicated Breast CT Images to Those in Automated Breast Ultrasound and Digital Breast Tomosynthesis Images.
    Green CA; Goodsitt MM; Lau JH; Brock KK; Davis CL; Carson PL
    Ultrasound Med Biol; 2020 Mar; 46(3):750-765. PubMed ID: 31806500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New image processing technique for evaluating breast microcalcifications: a comparative study.
    Machado P; Eisenbrey JR; Cavanaugh B; Forsberg F
    J Ultrasound Med; 2012 Jun; 31(6):885-93. PubMed ID: 22644685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overview of digital breast tomosynthesis: Clinical cases, benefits and disadvantages.
    Nguyen T; Levy G; Poncelet E; Le Thanh T; Prolongeau JF; Phalippou J; Massoni F; Laurent N
    Diagn Interv Imaging; 2015 Sep; 96(9):843-59. PubMed ID: 26275829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breast cancer detection in automated 3D breast ultrasound using iso-contours and cascaded RUSBoosts.
    Kozegar E; Soryani M; Behnam H; Salamati M; Tan T
    Ultrasonics; 2017 Aug; 79():68-80. PubMed ID: 28448836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning a structured graphical model with boosted top-down features for ultrasound image segmentation.
    Hao Z; Wang Q; Wang X; Kim JB; Hwang Y; Cho BH; Guo P; Lee WK
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):227-34. PubMed ID: 24505670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound.
    Lin X; Wang J; Han F; Fu J; Li A
    Eur J Radiol; 2012 May; 81(5):873-8. PubMed ID: 21420814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-registration of MR-mammography and X-ray mammography.
    Dietzel M; Baltzer PA; Hopp T; Ruiter NV; Kaiser WA
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S27-9. PubMed ID: 23083591
    [No Abstract]   [Full Text] [Related]  

  • 37. Completely automated segmentation approach for breast ultrasound images using multiple-domain features.
    Shan J; Cheng HD; Wang Y
    Ultrasound Med Biol; 2012 Feb; 38(2):262-75. PubMed ID: 22230134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms.
    van Schie G; Wallis MG; Leifland K; Danielsson M; Karssemeijer N
    Med Phys; 2013 Apr; 40(4):041902. PubMed ID: 23556896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volumetric breast density estimation from full-field digital mammograms.
    van Engeland S; Snoeren PR; Huisman H; Boetes C; Karssemeijer N
    IEEE Trans Med Imaging; 2006 Mar; 25(3):273-82. PubMed ID: 16524084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MRI to X-ray mammography registration using a volume-preserving affine transformation.
    Mertzanidou T; Hipwell J; Cardoso MJ; Zhang X; Tanner C; Ourselin S; Bick U; Huisman H; Karssemeijer N; Hawkes D
    Med Image Anal; 2012 Jul; 16(5):966-75. PubMed ID: 22513136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.