These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18002224)

  • 21. Regulation of CRAC channel activity by recruitment of silent channels to a high open-probability gating mode.
    Prakriya M; Lewis RS
    J Gen Physiol; 2006 Sep; 128(3):373-86. PubMed ID: 16940559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular pharmacology of high voltage-activated calcium channels.
    Doering CJ; Zamponi GW
    J Bioenerg Biomembr; 2003 Dec; 35(6):491-505. PubMed ID: 15000518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power-frequency electromagnetic fields and the capacitative calcium entry system in SV40-transformed Swiss 3T3 cells.
    Sisken JE; DeRemer D
    Radiat Res; 2000 May; 153(5 Pt 2):699-705. PubMed ID: 10790295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mechanism for action of extremely low frequency electromagnetic fields on biological systems.
    Balcavage WX; Alvager T; Swez J; Goff CW; Fox MT; Abdullyava S; King MW
    Biochem Biophys Res Commun; 1996 May; 222(2):374-8. PubMed ID: 8670212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations.
    Eichwald C; Kaiser F
    Bioelectromagnetics; 1995; 16(2):75-85. PubMed ID: 7612029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of action of moderate-intensity static magnetic fields on biological systems.
    Rosen AD
    Cell Biochem Biophys; 2003; 39(2):163-73. PubMed ID: 14515021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurotransmitter modulation of neuronal calcium channels.
    Elmslie KS
    J Bioenerg Biomembr; 2003 Dec; 35(6):477-89. PubMed ID: 15000517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.
    Luo FL; Yang N; He C; Li HL; Li C; Chen F; Xiong JX; Hu ZA; Zhang J
    Environ Res; 2014 Nov; 135():236-46. PubMed ID: 25462671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric field-induced changes in agonist-stimulated calcium fluxes of human HL-60 leukemia cells.
    Kim YV; Conover DL; Lotz WG; Cleary SF
    Bioelectromagnetics; 1998; 19(6):366-76. PubMed ID: 9738527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms.
    Hadley RW; Lederer WJ
    J Physiol; 1991 Dec; 444():257-68. PubMed ID: 1668348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromagnetic field (EMF) effects on channel activity of nanopore OmpF protein.
    Mohammadzadeh M; Mobasheri H; Arazm F
    Eur Biophys J; 2009 Oct; 38(8):1069-78. PubMed ID: 19603160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of drugs and toxins with permeant ions in potassium, sodium, and calcium channels.
    Zhorov BS
    Ross Fiziol Zh Im I M Sechenova; 2011 Jul; 97(7):661-77. PubMed ID: 21961291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies.
    Barry PH
    Cell Biochem Biophys; 2006; 46(2):143-54. PubMed ID: 17012755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semimicroscopic modeling of permeation energetics in ion channels.
    Jordan PC
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):94-101. PubMed ID: 15816175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-passage-time analysis of atomic-resolution simulations of the ionic transport in a bacterial porin.
    Calero C; Faraudo J; Aguilella-Arzo M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021908. PubMed ID: 21405864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels.
    Tolokh IS; Goldman S; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011902. PubMed ID: 16907122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A probability wave theory on the ion movement across cell membrane].
    Zhang H; Xu J; Niu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):257-61. PubMed ID: 17591237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitatory effect of Ins(1,4,5)P3 on store-operated Ca2+-permeable cation channels in rabbit portal vein myocytes.
    Liu M; Albert AP; Large WA
    J Physiol; 2005 Jul; 566(Pt 1):161-71. PubMed ID: 15860523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-gated sodium and calcium channels in nerve, muscle, and heart.
    French RJ; Zamponi GW
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):58-69. PubMed ID: 15816172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara.
    Berestovsky GN; Kataev AA
    Eur Biophys J; 2005 Nov; 34(8):973-86. PubMed ID: 15971063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.