These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18002248)

  • 41. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators.
    Müller J; Hartmann J; Bert C
    Phys Med Biol; 2016 Apr; 61(7):2646-64. PubMed ID: 26976046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the adjoint and influence coefficient methods for solving the inverse hyperthermia problem.
    Liauh CT; Hills RG; Roemer RB
    J Biomech Eng; 1993 Feb; 115(1):63-71. PubMed ID: 8445900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.
    Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Verification of a hyperthermia model method using MR thermometry.
    Clegg ST; Das SK; Zhang Y; Macfall J; Fullar E; Samulski TV
    Int J Hyperthermia; 1995; 11(3):409-24. PubMed ID: 7636327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heating properties of a new hyperthermia system for deep tumors without contact.
    Yokoyama K; Kato K; Igarashi W; Shindo Y; Kubo M; Takahashi H; Uzuka T; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():310-3. PubMed ID: 22254311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback.
    Chopra R; Wachsmuth J; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2006 Feb; 51(4):827-44. PubMed ID: 16467581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noninvasive temperature estimation based on the energy of backscattered ultrasound.
    Arthur RM; Straube WL; Starman JD; Moros EG
    Med Phys; 2003 Jun; 30(6):1021-9. PubMed ID: 12852524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel ultrasonic thermotherapy instrument.
    Zhang Z; Huang TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2227-9. PubMed ID: 18002433
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the accuracy of noninvasive thermometry using molecular diffusion magnetic resonance imaging.
    Zhang Y; Samulski TV; Joines WT; Mattiello J; Levin RL; LeBihan D
    Int J Hyperthermia; 1992; 8(2):263-74. PubMed ID: 1573315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of the re-entrant type resonant cavity applicator for brain tumor hyperthermia - experimental heating results.
    Yabuhara T; Kato K; Tsuchiya K; Shigihara T; Uzuka T; Takahashi H
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5161-4. PubMed ID: 17945880
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of a thermocouple for malignant tumor detection. Investigating temperature difference as a diagnostic criterion.
    Zhao Q; Zhang J; Wang R; Cong W
    IEEE Eng Med Biol Mag; 2008; 27(1):64-6. PubMed ID: 18270051
    [No Abstract]   [Full Text] [Related]  

  • 52. Automatic temperature controller for multielement array hyperthermia systems.
    Johnson JE; Maccarini PF; Neuman D; Stauffer PR
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1006-15. PubMed ID: 16761827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry.
    Smith NB; Buchanan MT; Hynynen K
    Int J Radiat Oncol Biol Phys; 1999 Jan; 43(1):217-25. PubMed ID: 9989529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions.
    Sprinkhuizen SM; Konings MK; van der Bom MJ; Viergever MA; Bakker CJ; Bartels LW
    Magn Reson Med; 2010 Nov; 64(5):1360-72. PubMed ID: 20648685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heating applicator based on reentrant cavity with optimized local heating characteristics.
    Ishihara Y; Kameyama Y; Minegishi Y; Wadamori N
    Int J Hyperthermia; 2008 Dec; 24(8):694-704. PubMed ID: 18608576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system.
    Gellermann J; Wlodarczyk W; Hildebrandt B; Ganter H; Nicolau A; Rau B; Tilly W; Fähling H; Nadobny J; Felix R; Wust P
    Cancer Res; 2005 Jul; 65(13):5872-80. PubMed ID: 15994965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors.
    Soto MA; Bolognini G; Di Pasquale F
    Opt Express; 2008 Nov; 16(23):19097-111. PubMed ID: 19582002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heating properties of non-invasive hyperthermia treatment for abdominal deep tumors by 3-D FEM.
    Morita E; Kato K; Ono S; Shindo Y; Tsuchiya K; Kubo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3389-92. PubMed ID: 19963800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia.
    Lin WL; Fan WC; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1329-36. PubMed ID: 10725647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.