BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18002262)

  • 1. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.
    Han H; Kim MJ; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method.
    Han H; Kim J
    Comput Biol Med; 2012 Apr; 42(4):387-93. PubMed ID: 22206810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion artifact reduction in photoplethysmography using independent component analysis.
    Kim BS; Yoo SK
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):566-8. PubMed ID: 16532785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of Periodic Motion Artifacts in Photoplethysmography.
    Wijshoff RW; Mischi M; Aarts RM
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):196-207. PubMed ID: 27093308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition.
    Thakur S; Chao PC; Tsai CH
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artifact reduction based on Empirical Mode Decomposition (EMD) in photoplethysmography for pulse rate detection.
    Wang Q; Yang P; Zhang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():959-62. PubMed ID: 21096980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Artifact-Resistive Technology Based on a Novel Dual Photoplethysmography Method for Wearable Pulse Rate Monitors.
    Zhou C; Feng J; Hu J; Ye X
    J Med Syst; 2016 Mar; 40(3):56. PubMed ID: 26645320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.
    Comtois G; Mendelson Y; Ramuka P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1528-31. PubMed ID: 18002258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.
    Lee B; Kee Y; Han J; Yi WJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7937-40. PubMed ID: 22256181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical approach for the detection of motion/noise artifacts in Photoplethysmogram.
    Selvaraj N; Mendelson Y; Shelley KH; Silverman DG; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4972-5. PubMed ID: 22255454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor.
    Suzuki T; Kameyama K; Tamura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation.
    Chowdhury SS; Hyder R; Hafiz MSB; Haque MA
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography.
    Poh MZ; Swenson NC; Picard RW
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):786-94. PubMed ID: 20172836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation.
    Islam MT; Ahmed ST; Shahnaz C; Fattah SA
    Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancellation of motion artifact induced by exercise for PPG-based heart rate sensing.
    Shimazaki T; Hara S; Okuhata H; Nakamura H; Kawabata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3216-9. PubMed ID: 25570675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.