These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18002422)

  • 1. A non-linear ultrasonic scattering approach for micro bubble concentration quantification.
    Mari JM; Hibbs K; Tang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2183-6. PubMed ID: 18002422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approximate nonlinear model for time gain compensation of amplitude modulated images of ultrasound contrast agent perfusion.
    Mari J; Hibbs K; Stride E; Eckersley R; Tang M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):818-29. PubMed ID: 20378445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the limitations of ultrasonic backscatter measurements from microbubble populations.
    Sboros V; Ramnarine KV; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2002 Dec; 47(23):4287-99. PubMed ID: 12502050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI.
    Lampaskis M; Averkiou M
    Ultrasound Med Biol; 2010 Feb; 36(2):306-12. PubMed ID: 20045592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles.
    Biagi E; Breschi L; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1048-54. PubMed ID: 16118987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble dynamics involved in ultrasonic imaging.
    Postema M; Schmitz G
    Expert Rev Mol Diagn; 2006 May; 6(3):493-502. PubMed ID: 16706749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2004 Jan; 49(1):159-73. PubMed ID: 14971779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency and pressure dependent attenuation and scattering by microbubbles.
    Tang MX; Eckersley RJ
    Ultrasound Med Biol; 2007 Jan; 33(1):164-8. PubMed ID: 17189060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-dependent attenuation with microbubbles at low mechanical index.
    Tang MX; Eckersley RJ; Noble JA
    Ultrasound Med Biol; 2005 Mar; 31(3):377-84. PubMed ID: 15749561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlinear propagation in ultrasound contrast agent imaging.
    Tang MX; Kamiyama N; Eckersley RJ
    Ultrasound Med Biol; 2010 Mar; 36(3):459-66. PubMed ID: 20133035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical relevance of pressure-dependent scattering at low acoustic pressures.
    Emmer M; Vos HJ; van Wamel A; Goertz DE; Versluis M; de Jong N
    Ultrasonics; 2007 Dec; 47(1-4):74-7. PubMed ID: 17845809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the effects of microbubble shell disruption on population scattering and implications for modeling contrast agent behavior.
    Chien CT; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):286-92. PubMed ID: 15128215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shell properties and concentration stability of acoustofluidic delivery agents.
    Alsadiq H; Tupally K; Vogel R; Kokil G; Parekh HS; Veidt M
    Phys Eng Sci Med; 2021 Mar; 44(1):79-91. PubMed ID: 33398637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.
    Li Q; Matula TJ; Tu J; Guo X; Zhang D
    Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbubble contrast agent detection using binary coded pulses.
    Eckersley RJ; Tang MX; Chetty K; Hajnal JV
    Ultrasound Med Biol; 2007 Nov; 33(11):1787-95. PubMed ID: 17629609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear characterization of microbubbles and tissue using the Nakagami statistical model.
    Bahbah N; Novell A; Bouakaz A; Djelouah H
    Ultrasonics; 2017 Apr; 76():200-207. PubMed ID: 28119148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.