These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18002463)

  • 1. Inductive phase shift spectroscopy for volumetric brain edema detection: an experimental simulation.
    González CA; Rojas R; Villanueva C; Rubinsky B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2346-9. PubMed ID: 18002463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental sensitivity study of inductive phase shift spectroscopy as non-invasive method for hypoperfusion vs bleeding volumetric detection in brain.
    Flores O; Rubinsky B; González CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():678-81. PubMed ID: 19162746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.
    González CA; Rubinsky B
    Physiol Meas; 2006 Jun; 27(6):539-52. PubMed ID: 16603802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study.
    Rojas R; Rubinsky B; González CA
    Physiol Meas; 2008 Jun; 29(6):S255-66. PubMed ID: 18544824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo inductive phase shift measurements to detect intraperitoneal fluid.
    González CA; Horowitz L; Rubinsky B
    IEEE Trans Biomed Eng; 2007 May; 54(5):953-6. PubMed ID: 17518296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detection of brain ischaemia in rats by inductive phase shift spectroscopy.
    González CA; Villanueva C; Vera C; Flores O; Reyes RD; Rubinsky B
    Physiol Meas; 2009 Aug; 30(8):809-19. PubMed ID: 19567939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of lung edema using focused impedance spectroscopy: a feasibility study.
    Mayer M; Brunner P; Merwa R; Scharfetter H
    Physiol Meas; 2005 Jun; 26(3):185-92. PubMed ID: 15798294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on healthy volunteers based on magnetic induction brain edema monitoring system.
    Xu J; Li G; Zhao S; Chen M; Chen J; Xu L; Wang F; Bai Z; Qin M; Sun J
    Technol Health Care; 2019; 27(S1):273-285. PubMed ID: 31045546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on magnetic induction frequency dependence of phase shift in oedema and haematoma.
    González CA; Rubinsky B
    Physiol Meas; 2006 Sep; 27(9):829-38. PubMed ID: 16868349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Contact Monitoring of Temporal Volume Changes of a Hematoma in the Head by a Single Inductive Coil: A Numerical Study.
    Oziel M; Korenstein R; Rubinsky B
    IEEE Trans Biomed Eng; 2019 May; 66(5):1328-1336. PubMed ID: 30281427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric electromagnetic phase-shift spectroscopy of brain edema and hematoma.
    Gonzalez CA; Valencia JA; Mora A; Gonzalez F; Velasco B; Porras MA; Salgado J; Polo SM; Hevia-Montiel N; Cordero S; Rubinsky B
    PLoS One; 2013; 8(5):e63223. PubMed ID: 23691001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitations.
    Scharfetter H; Casañas R; Rosell J
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):870-80. PubMed ID: 12848355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ac Modeling and impedance spectrum tests of the superconducting magnetic field coils for the Wendelstein 7-X fusion experiment.
    Ehmler H; Köppen M
    Rev Sci Instrum; 2007 Oct; 78(10):104705. PubMed ID: 17979447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time Noninvasive Monitoring of Intracranial Fluid Shifts During Dialysis Using Volumetric Integral Phase-Shift Spectroscopy (VIPS): A Proof-of-Concept Study.
    Venkatasubba Rao CP; Bershad EM; Calvillo E; Maldonado N; Damani R; Mandayam S; Suarez JI
    Neurocrit Care; 2018 Feb; 28(1):117-126. PubMed ID: 28547320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifrequency Analysis of Single Inductive Coil Measurements Across a Gel Phantom Simulation of Internal Bleeding in the Brain.
    Oziel M; Hjouj M; Rubinsky B; Korenstein R
    Bioelectromagnetics; 2020 Jan; 41(1):21-33. PubMed ID: 31755122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of a double-coil inductive transducer for measuring electrical conductivity.
    Kusmierz J
    Rev Sci Instrum; 2007 Aug; 78(8):084704. PubMed ID: 17764344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT.
    Xiao C; Lei Y
    Phys Med Biol; 2005 Jun; 50(11):2663-74. PubMed ID: 15901961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of non-invasive cerebral electrical impedance measurement on brain edema in patients with cerebral infarction.
    He LY; Wang J; Luo Y; Dong WW; Liu LX
    Neurol Res; 2010 Sep; 32(7):770-4. PubMed ID: 19726011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current source for multifrequency broadband electrical bioimpedance spectroscopy systems. A novel approach.
    Seoane F; Bragós R; Lindecrantz K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5121-5. PubMed ID: 17945876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of rheoencephalographic measurements to spatial brain electrical conductivity.
    Guijarro E; Perez JJ; Berjano E; Ortiz P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6088-91. PubMed ID: 17946355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.