BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 18002635)

  • 1. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
    Yin YH; Fan YJ; Xu LD
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An upper-limb power-assist exoskeleton using proportional myoelectric control.
    Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z
    Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.
    Kiguchi K; Hayashi Y
    IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1064-71. PubMed ID: 22334026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction.
    Huang P; Wang H; Wang Y; Liu Z; Samuel OW; Yu M; Li X; Chen S; Li G
    Comput Math Methods Med; 2020; 2020():5694265. PubMed ID: 32351614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An upper-limb power-assist robot with tremor suppression control.
    Kiguchi K; Hayashi Y; Asami T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975390. PubMed ID: 22275594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic adaptive onset detection using an electromyogram with individual difference for control of a meal assistance robot.
    Zhang X; Wang X; Wang B; Sugi T; Nakamura M
    J Med Eng Technol; 2009; 33(4):322-7. PubMed ID: 19384708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.
    Ngeo J; Tamei T; Shibata T; Orlando MF; Behera L; Saxena A; Dutta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():338-41. PubMed ID: 24109693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the hand motion recognition system based on surface EMG using suitable measurement channels for pattern recognition.
    Nagata K; Ando K; Magatani K; Yamada M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5214-7. PubMed ID: 18003183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravity compensation of an upper extremity exoskeleton.
    Moubarak S; Pham MT; Moreau R; Redarce T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized clustering approach for motion discrimination using EMG signal.
    Kita K; Kato R; Yokoi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2587-90. PubMed ID: 19965218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proportional EMG control for upper-limb powered exoskeletons.
    Lenzi T; De Rossi SM; Vitiello N; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():628-31. PubMed ID: 22254387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.