These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 18002682)
1. Speed estimation from a tri-axial accelerometer using neural networks. Song Y; Shin S; Kim S; Lee D; Lee KH Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3224-7. PubMed ID: 18002682 [TBL] [Abstract][Full Text] [Related]
2. Assessment of spatio-temporal parameters during unconstrained walking. Zijlstra W Eur J Appl Physiol; 2004 Jun; 92(1-2):39-44. PubMed ID: 14985994 [TBL] [Abstract][Full Text] [Related]
3. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway. Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019 [TBL] [Abstract][Full Text] [Related]
4. Assessment of walking features from foot inertial sensing. Sabatini AM; Martelloni C; Scapellato S; Cavallo F IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579 [TBL] [Abstract][Full Text] [Related]
5. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors. Sabatini AM; Ligorio G; Mannini A Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696 [TBL] [Abstract][Full Text] [Related]
6. A single gyroscope method for spatial gait analysis. Doheny EP; Foran TG; Greene BR Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1300-3. PubMed ID: 21095923 [TBL] [Abstract][Full Text] [Related]
7. Ambulatory running speed estimation using an inertial sensor. Yang S; Mohr C; Li Q Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521 [TBL] [Abstract][Full Text] [Related]
8. An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors. Goulermas JY; Findlow AH; Nester CJ; Liatsis P; Zeng XJ; Kenney LP; Tresadern P; Thies SB; Howard D IEEE Trans Neural Netw; 2008 Sep; 19(9):1574-82. PubMed ID: 18779089 [TBL] [Abstract][Full Text] [Related]
9. Optimum gravity vector and vertical acceleration estimation using a tri-axial accelerometer for falls and normal activities. Bourke AK; O'Donovan K; Clifford A; ÓLaighin G; Nelson J Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7896-9. PubMed ID: 22256171 [TBL] [Abstract][Full Text] [Related]
10. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885 [TBL] [Abstract][Full Text] [Related]
11. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Kobsar D; Olson C; Paranjape R; Hadjistavropoulos T; Barden JM Gait Posture; 2014; 39(1):553-7. PubMed ID: 24139685 [TBL] [Abstract][Full Text] [Related]
13. Single-accelerometer-based daily physical activity classification. Long X; Yin B; Aarts RM Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261 [TBL] [Abstract][Full Text] [Related]
14. Effect of walking speed on the gait of king penguins: An accelerometric approach. Willener AS; Handrich Y; Halsey LG; Strike S J Theor Biol; 2015 Dec; 387():166-73. PubMed ID: 26427338 [TBL] [Abstract][Full Text] [Related]
15. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Köse A; Cereatti A; Della Croce U J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235 [TBL] [Abstract][Full Text] [Related]
16. Freely chosen stride frequencies during walking and running are not correlated with freely chosen pedalling frequency and are insensitive to strength training. Sardroodian M; Madeleine P; Voigt M; Hansen EA Gait Posture; 2015 Jun; 42(1):60-4. PubMed ID: 25943407 [TBL] [Abstract][Full Text] [Related]
17. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking. Yang S; Li Q Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007 [TBL] [Abstract][Full Text] [Related]
18. Adaptive estimation of temporal gait parameters using body-worn gyroscopes. Greene BR; McGrath D; O'Donovan KJ; O'Neill R; Burns A; Caulfield B Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1296-9. PubMed ID: 21095922 [TBL] [Abstract][Full Text] [Related]
19. Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis. Tura A; Rocchi L; Raggi M; Cutti AG; Chiari L J Neuroeng Rehabil; 2012 Feb; 9():11. PubMed ID: 22316184 [TBL] [Abstract][Full Text] [Related]
20. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]