These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18002781)

  • 1. Simulator with photon and arbitrarily arranged RBC for hematocrit estimation.
    Oshima S; Sankai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3623-8. PubMed ID: 18002781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of red blood cell-photon simulator for optical propagation analysis in blood using Monte Carlo method.
    Oshima S; Sankai Y
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):356-63. PubMed ID: 21342854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon-cell interactive Monte Carlo model based on the geometric optics theory for photon migration in blood by incorporating both extra- and intracellular pathways.
    Sakota D; Takatani S
    J Biomed Opt; 2010; 15(6):065001. PubMed ID: 21198165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions.
    Friebel M; Roggan A; Müller G; Meinke M
    J Biomed Opt; 2006; 11(3):34021. PubMed ID: 16822070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of red blood cells in suspension: study by light-scattering technique at small angles.
    Pop CV; Neamtu S
    J Biomed Opt; 2008; 13(4):041308. PubMed ID: 19021316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical model functions to calculate hematocrit-dependent optical properties of human blood.
    Meinke M; Müller G; Helfmann J; Friebel M
    Appl Opt; 2007 Apr; 46(10):1742-53. PubMed ID: 17356617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physical characteristics of erythrocyte settling in a liquid medium.
    Burton RR; Sluka SJ; Krone RB; Smith AH
    J Biomech; 1969 Oct; 2(4):389-96. PubMed ID: 16335139
    [No Abstract]   [Full Text] [Related]  

  • 11. Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition.
    Wang X; Lai J; Li Z
    Opt Express; 2012 Aug; 20(18):20771-82. PubMed ID: 23037126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.
    Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG
    Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of red blood cell rouleaux formation studied by light scattering.
    Szolna-Chodór A; Bosek M; Grzegorzewski B
    J Biomed Opt; 2015 Feb; 20(2):25001. PubMed ID: 25649625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of scattering from healthy and diseased red blood cells.
    Ergül O; Arslan-Ergül A; Gürel L
    J Biomed Opt; 2010; 15(4):045004. PubMed ID: 20799799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent optical property estimation in deep waters.
    Rehm E; McCormick NJ
    Opt Express; 2011 Dec; 19(25):24986-5005. PubMed ID: 22273892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equi-intensity distribution of optical reflectance in a fibrous turbid medium.
    Shuaib A; Yao G
    Appl Opt; 2010 Feb; 49(5):838-44. PubMed ID: 20154751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.