These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 18002874)
1. A dynamic lumped parameter model of the left ventricular assisted circulation. Lim E; Cloherty SL; Reizes JA; Mason DG; Salamonsen RF; Karantonis DM; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3990-3. PubMed ID: 18002874 [TBL] [Abstract][Full Text] [Related]
2. Parameter-optimized model of cardiovascular-rotary blood pump interactions. Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086 [TBL] [Abstract][Full Text] [Related]
3. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance. Lim E; Dokos S; Salamonsen RF; Rosenfeldt FL; Ayre PJ; Lovell NH Artif Organs; 2012 May; 36(5):E125-37. PubMed ID: 22489771 [TBL] [Abstract][Full Text] [Related]
4. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements. Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286 [TBL] [Abstract][Full Text] [Related]
6. Modeling study of the failing heart and its interaction with an implantable rotary blood pump. Ramachandran DP; Luo C; Ma TS; Clark JW Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2403-9. PubMed ID: 22254826 [TBL] [Abstract][Full Text] [Related]
7. Physiological control of implantable rotary blood pumps for heart failure patients. Bakouri MA; Salamonsen RF; Savkin AV; Alomari AH; Lim E; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():675-8. PubMed ID: 24109777 [TBL] [Abstract][Full Text] [Related]
8. Numeric modeling of the cardiovascular system with a left ventricular assist device. Zhou J; Armstrong GP; Medvedev AL; Smith WA; Golding LA; Thomas JD ASAIO J; 1999; 45(1):83-9. PubMed ID: 9952014 [TBL] [Abstract][Full Text] [Related]
9. A simplified state-space model of biventricular assist device-cardiovascular system interaction. Koh VC; Einly Lim ; Boon Chiang Ng ; Yong Kuen Ho ; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4317-4320. PubMed ID: 28325006 [TBL] [Abstract][Full Text] [Related]
10. [Research on Control of the Cardiovascular System Based on a Left Ventricular Assist Device]. Wang F; Xu Q; Wu Z; Wen T; Ji J; He Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1075-83. PubMed ID: 29714970 [TBL] [Abstract][Full Text] [Related]
11. An extended computational model of the circulatory system for designing ventricular assist devices. Hsu PL; Cheng SJ; Saumarez RC; Dawes WN; McMahon RA ASAIO J; 2008; 54(6):594-9. PubMed ID: 19033772 [TBL] [Abstract][Full Text] [Related]
12. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices. Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive deadbeat control of an implantable rotary blood pump: a simulation study. Lim E; Alomari AH; Savkin AV; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2855-8. PubMed ID: 19964276 [TBL] [Abstract][Full Text] [Related]
14. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support. Bozkurt S Artif Organs; 2018 Aug; 42(8):800-813. PubMed ID: 29726017 [TBL] [Abstract][Full Text] [Related]
15. A rule-based controller based on suction detection for rotary blood pumps. Ferreira A; Boston JR; Antaki JF Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3978-81. PubMed ID: 18002871 [TBL] [Abstract][Full Text] [Related]
16. Hybrid model analysis of intra-aortic balloon pump performance as a function of ventricular and circulatory parameters. Ferrari G; Khir AW; Fresiello L; Di Molfetta A; Kozarski M Artif Organs; 2011 Sep; 35(9):902-11. PubMed ID: 21726242 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study. Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482 [TBL] [Abstract][Full Text] [Related]
18. A hybrid mock circulatory system: testing a prototype under physiologic and pathological conditions. Ferrari G; De Lazzari C; Kozarski M; Clemente F; Górczyńska K; Mimmo R; Monnanni E; Tosti G; Guaragno M ASAIO J; 2002; 48(5):487-94. PubMed ID: 12296568 [TBL] [Abstract][Full Text] [Related]
19. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump. Xu L; Fu M ASAIO J; 2000; 46(5):604-11. PubMed ID: 11016517 [TBL] [Abstract][Full Text] [Related]
20. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient. Arndt A; Nüsser P; Graichen K; Müller J; Lampe B Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]