These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18002882)

  • 21. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.
    Nycz CJ; Delph MA; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3889-92. PubMed ID: 26737143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ShouldeRO, an alignment-free two-DOF rehabilitation robot for the shoulder complex.
    Dehez B; Sapin J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975339. PubMed ID: 22275544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements.
    Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wrist and Finger Torque Sensor for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; Moulton TS; Miller LC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975464. PubMed ID: 22275662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.
    Sucar L; Luis R; Leder R; Hernandez J; Sanchez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3690-3. PubMed ID: 21096856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of an exoskeleton for index finger rehabilitation.
    Wang J; Li J; Zhang Y; Wang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5957-60. PubMed ID: 19965067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pneumatic robotic systems for upper limb rehabilitation.
    Morales R; Badesa FJ; García-Aracil N; Sabater JM; Pérez-Vidal C
    Med Biol Eng Comput; 2011 Oct; 49(10):1145-56. PubMed ID: 21822631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.