These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18003079)

  • 21. Usability evaluation of attitude control for a robotic wheelchair for tip mitigation in outdoor environments.
    Sivakanthan S; Candiotti JL; Sundaram SA; Battles C; Daveler BJ; Chung CS; Grindle GG; Cooper R; Dicianno BE; Cooper RA
    Med Eng Phys; 2020 Aug; 82():86-96. PubMed ID: 32709269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of differences in powered wheelchair joystick shape on subjective and objective operability.
    Koyama S; Tatemoto T; Kumazawa N; Tanabe S; Nakagawa Y; Otaka Y
    Appl Ergon; 2023 Feb; 107():103920. PubMed ID: 36306702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Participatory design and validation of mobility enhancement robotic wheelchair.
    Daveler B; Salatin B; Grindle GG; Candiotti J; Wang H; Cooper RA
    J Rehabil Res Dev; 2015; 52(6):739-50. PubMed ID: 26562492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncertainty analysis for wheelchair propulsion dynamics.
    Cooper RA; Boninger ML; VanSickle DP; Robertson RN; Shimada SD
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):130-9. PubMed ID: 9184899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters.
    Sprigle S; Huang M; Misch J
    Assist Technol; 2022 Jan; 34(1):91-103. PubMed ID: 31891276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks.
    Rabreau O; Chevallier S; Chassagne L; Monacelli E
    J Neuroeng Rehabil; 2019 Nov; 16(1):134. PubMed ID: 31694645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hazardous Object Detection by Using Kinect Sensor in a Handle-Type Electric Wheelchair.
    Kim J; Hasegawa T; Sakamoto Y
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design features of portable wheelchair ramps and their implications for curb and vehicle access.
    Storr T; Spicer J; Frost P; Attfield S; Ward CD; Pinnington LL
    J Rehabil Res Dev; 2004 May; 41(3B):443-52. PubMed ID: 15543462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A theory of wheelchair wheelie performance.
    Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1987; 24(2):67-80. PubMed ID: 3585785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cost-effectiveness of powered wheelchairs: findings of a study.
    Andrich R; Salatino C; Converti RM; Saruggia M
    Stud Health Technol Inform; 2015; 217():84-91. PubMed ID: 26294457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A lateral dynamics of a wheelchair: identification and analysis of tire parameters.
    Silva LC; Corrêa FC; Eckert JJ; Santiciolli FM; Dedini FG
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):332-341. PubMed ID: 28095721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative evaluation of electric wheelchair manoeuvrability.
    Pellegrini N; Bouche S; Barbot F; Figère M; Guillon B; Lofaso F
    J Rehabil Med; 2010 Jun; 42(6):605-7. PubMed ID: 20549168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bibliometric Analysis of Human-Machine Interaction Methodology for Electric-Powered Wheelchairs Driving from 1998 to 2020.
    Zhang X; Hui L; Wei L; Song F; Hu F
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.
    Winkler SL; Romero S; Prather E; Ramroop M; Slaibe E; Christensen M
    Am J Occup Ther; 2016; 70(2):7002350010p1-5. PubMed ID: 26943118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.
    Liles H; Huang M; Caspall J; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):983-91. PubMed ID: 25420269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, development and testing of a low-cost electric powered wheelchair for India.
    Pearlman J; Cooper R; Chhabra HS; Jefferds A
    Disabil Rehabil Assist Technol; 2009 Jan; 4(1):42-57. PubMed ID: 19172480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wheelchair batteries. II: Capacity, sizing, and life.
    Kauzlarich JJ
    J Rehabil Res Dev; 1990; 27(2):163-70. PubMed ID: 2366200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.