These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18003089)

  • 1. Extracting neural drives from surface EMG: a generative model and simulation studies.
    Jiang N; Parker PA; Englehart KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4838-41. PubMed ID: 18003089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.
    Jiang N; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1070-80. PubMed ID: 19272889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical and technical considerations in surface electromyography.
    Ferdjallah M; Wertsch JJ
    Phys Med Rehabil Clin N Am; 1998 Nov; 9(4):925-31. PubMed ID: 9894103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.
    Ngeo J; Tamei T; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3537-40. PubMed ID: 25570754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approach for electromyography-controlled prostheses based on facial action.
    Zhang X; Li R; Li H; Lu Z; Hu Y; Alhassan AB
    Med Biol Eng Comput; 2020 Nov; 58(11):2685-2698. PubMed ID: 32862364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthesis of EMG signals based on considerations of signal spectra.
    Gammans P; Qin SF; Wright DK
    Biomed Sci Instrum; 2003; 39():187-92. PubMed ID: 12724892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements.
    Cheron G; Draye JP; Bourgeios M; Libert G
    IEEE Trans Biomed Eng; 1996 May; 43(5):552-8. PubMed ID: 8849468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.
    Mattioli FE; Lamounier EA; Cardoso A; Soares AB; Andrade AO
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7254-7. PubMed ID: 22256013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals.
    Zhang Q; Liu R; Chen W; Xiong C
    Front Neurosci; 2017; 11():280. PubMed ID: 28611573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Invasive Analysis of Motor Unit Activation During Simultaneous and Continuous Wrist Movements.
    Chen C; Yu Y; Sheng X; Zhu X
    IEEE J Biomed Health Inform; 2022 May; 26(5):2106-2115. PubMed ID: 34910644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrum of the nonstationary electromyographic signal modelled with integral pulse frequency modulation and its application to estimating neural drive information.
    Jiang N; Parker PA; Englehart KB
    J Electromyogr Kinesiol; 2009 Aug; 19(4):e267-79. PubMed ID: 18619856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular interfacing: a novel approach to EMG-driven multiple DOF physiological models.
    Pau JW; Xie SS; Xu WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6631-4. PubMed ID: 24111263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regression convolutional neural network for improved simultaneous EMG control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    J Neural Eng; 2019 Jun; 16(3):036015. PubMed ID: 30849774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of EMG Signals Using a Neuromorphic Implementation of a Spiking Neural Network.
    Donati E; Payvand M; Risi N; Krause R; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):795-803. PubMed ID: 31251192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of high motor unit synchronization levels on non-linear and spectral variables of the surface EMG.
    Fattorini L; Felici F; Filligoi GC; Traballesi M; Farina D
    J Neurosci Methods; 2005 Apr; 143(2):133-9. PubMed ID: 15814145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Neurophysiol; 2013 Jun; 109(11):2658-65. PubMed ID: 23515790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.