These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18003090)

  • 1. A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment.
    Hargrove L; Losier Y; Lock B; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4842-5. PubMed ID: 18003090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.
    Mattioli FE; Lamounier EA; Cardoso A; Soares AB; Andrade AO
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7254-7. PubMed ID: 22256013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis.
    Hargrove LJ; Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):49-57. PubMed ID: 20071277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.
    Matsubara T; Morimoto J
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2205-13. PubMed ID: 23475334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes.
    Boschmann A; Nofen B; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis.
    Hargrove L; Miller L; Turner K; Kuiken T
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Pattern Recognition Myoelectric Training for Improved Online Control within a 3D Virtual Environment.
    Woodward RB; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4701-4704. PubMed ID: 30441399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.
    Hargrove LJ; Li G; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A supervised feature projection for real-time multifunction myoelectric hand control.
    Chu JU; Moon I; Mun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2417-20. PubMed ID: 17945714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Strathclyde brain computer interface.
    Valsan G; Grychtol B; Lakany H; Conway BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():606-9. PubMed ID: 19963973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.
    Smith LH; Hargrove LJ; Lock BA; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):186-92. PubMed ID: 21193383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis.
    Chicoine CL; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.