BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18003201)

  • 1. A preliminary study for portable walking distance measurement system using ultrasonic sensors.
    Jang Y; Shin S; Lee JW; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5290-3. PubMed ID: 18003201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensor approach to walking distance estimation with foot inertial sensing.
    Alvarez JC; González RC; Alvarez D; López AM; Rodríguez-Uría J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5720-3. PubMed ID: 18003311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist.
    Kose A; Cereatti A; Della Croce U
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The validity of two Omron pedometers during treadmill walking is speed dependent.
    Giannakidou DM; Kambas A; Ageloussis N; Fatouros I; Christoforidis C; Venetsanou F; Douroudos I; Taxildaris K
    Eur J Appl Physiol; 2012 Jan; 112(1):49-57. PubMed ID: 21479653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of wearable and wireless multi-parameter monitoring system for evaluating cardiopulmonary function.
    Li SH; Lin BS; Wang CA; Yang CT; Lin BS
    Med Eng Phys; 2017 Sep; 47():144-150. PubMed ID: 28684215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive measurement of instantaneous radial artery blood pressure. An instrument based on the volume-compensation method.
    Tanaka S; Gao S; Nogawa M; Yamakoshi K
    IEEE Eng Med Biol Mag; 2005; 24(4):32-7. PubMed ID: 16119210
    [No Abstract]   [Full Text] [Related]  

  • 14. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the centre of pressure during walking and running using an instrumented treadmill.
    Verkerke GJ; Hof AL; Zijlstra W; Ament W; Rakhorst G
    J Biomech; 2005 Sep; 38(9):1881-5. PubMed ID: 16023476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory measurement of ground reaction forces.
    Veltink PH; Liedtke C; Droog E; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):423-7. PubMed ID: 16200765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound monitoring of inter-knee distances during gait.
    Lai DT; Wrigley TV; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():725-8. PubMed ID: 19963728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an ambulatory physical activity memory device and its application for the categorization of actions in daily life.
    Makikawa M; Iizumi H
    Medinfo; 1995; 8 Pt 1():747-50. PubMed ID: 8591316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steps towards a miniaturized, robust and autonomous measurement device for the long-term monitoring of patient activity: ActiBelt.
    Daumer M; Thaler K; Kruis E; Feneberg W; Staude G; Scholz M
    Biomed Tech (Berl); 2007 Feb; 52(1):149-55. PubMed ID: 17313352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voice quality monitoring: a portable device prototype.
    Manfredi C; Bruschi T; Dallai A; Ferri A; Tortoli P; Calisti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():997-1000. PubMed ID: 19162826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.