These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18003304)

  • 1. A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
    Huang P; Guo J; Megerian CA; Young DJ; Ko WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5692-5. PubMed ID: 18003304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of MEMS Acoustic Sensors as Implantable Microphones for Totally Implantable Hearing-Aid Systems.
    Ko WH; Rui Zhang ; Ping Huang ; Jun Guo ; Xuesong Ye ; Young DJ; Megerian CA
    IEEE Trans Biomed Circuits Syst; 2009 Oct; 3(5):277-85. PubMed ID: 23853266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of incus removal on middle ear acoustic sensor for a fully implantable cochlear prosthesis.
    Zurcher MA; Young DJ; Semaan M; Megerian CA; Ko WH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():539-42. PubMed ID: 17945982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Vibro-Acoustic Hybrid Implantable Microphone for Middle Ear Hearing Aids and Cochlear Implants.
    Seong KW; Mun HJ; Shin DH; Kim JH; Nakajima HH; Puria S; Cho JH
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.
    Zhang JZ; Graf L; Banerjee A; Yeiser A; McHugh CI; Kymissis I; Lang JH; Olson ES; Nakajima HH
    J Assoc Res Otolaryngol; 2024 Feb; 25(1):53-61. PubMed ID: 38238525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frequency response of a floating piezoelectric microphone for the implantable middle ear microphone.
    Gao N; Chen YZ; Chi FL; Zhang TY; Xu HD; Kang HY; Pan TZ
    Laryngoscope; 2013 Jun; 123(6):1506-13. PubMed ID: 23625487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoelectric Multi-Channel Bilayer Transducer for Sensing and Filtering Ossicular Vibration.
    Yüksel MB; Atik AC; Külah H
    Adv Sci (Weinh); 2024 Apr; 11(16):e2308277. PubMed ID: 38380504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ossicular chain vibration at the umbo: implications for a middle ear microelectromechanical system design.
    Young DJ; Zurcher MA; Trang T; Megerian CA; Ko WH
    Ear Nose Throat J; 2010 Jan; 89(1):21-6. PubMed ID: 20155695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of an implantable fiber-optic microphone on human cadavers.
    Djinović Z; Pavelka R; Tomić M; Sprinzl G; Müller JG; Traxler H
    Hear Res; 2021 Oct; 410():108351. PubMed ID: 34551371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The middle ear bioelectronic microphone for a totally implantable cochlear hearing device for profound and total hearing loss.
    Maniglia AJ; Abbass H; Azar T; Kane M; Amantia P; Garverick S; Ko WH; Frenz W; Falk T
    Am J Otol; 1999 Sep; 20(5):602-11. PubMed ID: 10503582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments.
    Pfiffner F; Prochazka L; Dobrev I; Klein K; Sulser P; Péus D; Sim JH; Dalbert A; Röösli C; Obrist D; Huber A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A technical review and evaluation of implantable sensors for hearing devices.
    Calero D; Paul S; Gesing A; Alves F; Cordioli JA
    Biomed Eng Online; 2018 Feb; 17(1):23. PubMed ID: 29433516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
    Chung K; McKibben N
    J Am Acad Audiol; 2011 Oct; 22(9):586-600. PubMed ID: 22192604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The UmboMic: A PVDF Cantilever Microphone.
    Yeiser AJ; Wawrzynek EF; Zhang JZ; Graf L; McHugh CI; Kymissis I; Olson ES; Lang JH; Nakajima HH
    ArXiv; 2023 Dec; ():. PubMed ID: 38196743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech perception comparisons using an implanted and an external microphone in existing cochlear implant users.
    Jenkins HA; Uhler K
    Otol Neurotol; 2012 Jan; 33(1):13-9. PubMed ID: 22158017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification Protocol for Signal Transparency Using the Cochlear Mini-Microphone 2+ and Digital Modulation Transmitter and Receiver with Cochlear Implants.
    Sousa R; Nair E; Wannagot S
    J Am Acad Audiol; 2019 Mar; 30(3):198-207. PubMed ID: 30461401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human studies of a piezoelectric transducer and a microphone for a totally implantable electronic hearing device.
    Zenner HP; Leysieffer H; Maassen M; Lehner R; Lenarz T; Baumann J; Keiner S; Plinkert PK; McElveen JT
    Am J Otol; 2000 Mar; 21(2):196-204. PubMed ID: 10733184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of an implanted microphone for cochlear implant listening.
    Gérard JM; Demanez L; Salmon C; Vanpoucke F; Walraevens J; Plasmans A; De Siati D; Lefèbvre P
    Eur Arch Otorhinolaryngol; 2017 Mar; 274(3):1383-1390. PubMed ID: 27904958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of an Implantable Middle Ear Microphone and Conventional External Microphone for Cochlear Implants: A Clinical Feasibility Study.
    Craddock LC; Hodson J; Gosling A; Cooper S; Morse RP; Begg P; Prokopiou A; Irving RM
    Otol Neurotol; 2022 Dec; 43(10):1162-1169. PubMed ID: 36240742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.