BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18003401)

  • 21. Flow characterization of a microfluidic device to selectively and reliably apply reagents to a cellular network.
    Santillo MF; Arcibal IG; Ewing AG
    Lab Chip; 2007 Sep; 7(9):1212-5. PubMed ID: 17713624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a mini 3D cell culture system using well defined nickel grids for the investigation of cell scaffold interactions.
    Sun T; Smallwood R; MacNeil S
    J Mater Sci Mater Med; 2009 Jul; 20(7):1483-93. PubMed ID: 19225869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.
    Ashraf MW; Tayyaba S; Nisar A; Afzulpurkar N; Bodhale DW; Lomas T; Poyai A; Tuantranont A
    Cardiovasc Eng; 2010 Sep; 10(3):91-108. PubMed ID: 20730492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.
    Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M
    Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thin-film IrOx pH microelectrode for microfluidic-based microsystems.
    Ges IA; Ivanov BL; Schaffer DK; Lima EA; Werdich AA; Baudenbacher FJ
    Biosens Bioelectron; 2005 Aug; 21(2):248-56. PubMed ID: 16023951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of cell detachment in a microfluidic device using a thermo-responsive copolymer on a gold substrate.
    Ernst O; Lieske A; Jäger M; Lankenau A; Duschl C
    Lab Chip; 2007 Oct; 7(10):1322-9. PubMed ID: 17896017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer control of the penicillin fermentation using the filtration probe in conjunction with a structured process model. 1983.
    Nestaas E; Wang DIC
    Biotechnol Bioeng; 2006 Oct; 95(2):317-326. PubMed ID: 16933285
    [No Abstract]   [Full Text] [Related]  

  • 31. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of stripline-based microfluidic chips for high-resolution NMR.
    Bart J; Janssen JW; van Bentum PJ; Kentgens AP; Gardeniers JG
    J Magn Reson; 2009 Dec; 201(2):175-85. PubMed ID: 19786359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro analysis of a hepatic device with intrinsic microvascular-based channels.
    Carraro A; Hsu WM; Kulig KM; Cheung WS; Miller ML; Weinberg EJ; Swart EF; Kaazempur-Mofrad M; Borenstein JT; Vacanti JP; Neville C
    Biomed Microdevices; 2008 Dec; 10(6):795-805. PubMed ID: 18604585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel cell force sensor for quantification of traction during cell spreading and contact guidance.
    Tymchenko N; Wallentin J; Petronis S; Bjursten LM; Kasemo B; Gold J
    Biophys J; 2007 Jul; 93(1):335-45. PubMed ID: 17434936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct patterning of free standing three dimensional silicon nanofibrous network to facilitate multi-dimensional growth of fibroblasts and osteoblasts.
    Premnath P; Tan B; Venkatakrishnan K
    J Biomed Nanotechnol; 2013 Nov; 9(11):1875-81. PubMed ID: 24059086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ; Nam JH; Lee YJ; Shin S
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.