These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 18003465)
1. An innovative opto-sensing workbench for bio-microfluidics monitoring and control. Bucolo M; Fortuna L; Sapuppo F Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6315-8. PubMed ID: 18003465 [TBL] [Abstract][Full Text] [Related]
2. Bio-Microfluidics Real-Time Monitoring Using CNN Technology. Sapuppo F; Intaglietta M; Bucolo M IEEE Trans Biomed Circuits Syst; 2008 Jun; 2(2):78-87. PubMed ID: 23852754 [TBL] [Abstract][Full Text] [Related]
3. Optical monitoring of bubble size and shape in a pulsating bubble surfactometer. Seurynck SL; Brown NJ; Wu CW; Germino KW; Kohlmeir EK; Ingenito EP; Glucksberg MR; Barron AE; Johnson M J Appl Physiol (1985); 2005 Aug; 99(2):624-33. PubMed ID: 15790687 [TBL] [Abstract][Full Text] [Related]
4. Image identification system based on an optical broadcast neural network processor. Ruiz-Llata M; Lamela-Rivera H Appl Opt; 2005 Apr; 44(12):2366-76. PubMed ID: 15861844 [TBL] [Abstract][Full Text] [Related]
5. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip. Godin J; Chen CH; Cho SH; Qiao W; Tsai F; Lo YH J Biophotonics; 2008 Oct; 1(5):355-76. PubMed ID: 19343660 [TBL] [Abstract][Full Text] [Related]
6. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. Pandiyan VP; John R Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958 [TBL] [Abstract][Full Text] [Related]
7. Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis. Tao X; Cho H; Janabi-Sharifi F Appl Opt; 2008 Aug; 47(22):4121-32. PubMed ID: 18670570 [TBL] [Abstract][Full Text] [Related]
10. In situ microfluidic flow rate measurement based on near-field heterodyne grating method. Katayama K; Uchimura H; Sakakibara H; Kikutani Y; Kitamori T Rev Sci Instrum; 2007 Aug; 78(8):083101. PubMed ID: 17764307 [TBL] [Abstract][Full Text] [Related]
11. All-optical control of microfluidic components using form birefringence. Neale SL; MacDonald MP; Dholakia K; Krauss TF Nat Mater; 2005 Jul; 4(7):530-3. PubMed ID: 15965480 [TBL] [Abstract][Full Text] [Related]
12. Microfabrication and applications of opto-microfluidic sensors. Zhang D; Men L; Chen Q Sensors (Basel); 2011; 11(5):5360-82. PubMed ID: 22163904 [TBL] [Abstract][Full Text] [Related]
13. Floated image mapping for integral floating display. Kim J; Min SW; Lee B Opt Express; 2008 Jun; 16(12):8549-56. PubMed ID: 18545568 [TBL] [Abstract][Full Text] [Related]
14. Hybrid opto-electric manipulation in microfluidics-opportunities and challenges. Kumar A; Williams SJ; Chuang HS; Green NG; Wereley ST Lab Chip; 2011 Jul; 11(13):2135-48. PubMed ID: 21603691 [TBL] [Abstract][Full Text] [Related]
15. Developing optofluidic technology through the fusion of microfluidics and optics. Psaltis D; Quake SR; Yang C Nature; 2006 Jul; 442(7101):381-6. PubMed ID: 16871205 [TBL] [Abstract][Full Text] [Related]
16. Optofluidic 1x4 switch. Groisman A; Zamek S; Campbell K; Pang L; Levy U; Fainman Y Opt Express; 2008 Sep; 16(18):13499-508. PubMed ID: 18772958 [TBL] [Abstract][Full Text] [Related]
17. Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy. MacKinnon N; Stange U; Lane P; MacAulay C; Quatrevalet M Appl Opt; 2005 Apr; 44(11):2033-40. PubMed ID: 15835352 [TBL] [Abstract][Full Text] [Related]
18. Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy. Li S; Thorsen T; Xu Z; Fang ZP; Zhao J; Yoon SF Appl Opt; 2009 Sep; 48(27):5088-94. PubMed ID: 19767923 [TBL] [Abstract][Full Text] [Related]