BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18003532)

  • 1. A color-based approach for automated segmentation in tumor tissue classification.
    Wang YY; Chang SC; Wu LW; Tsai ST; Sun YN
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6577-80. PubMed ID: 18003532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color-based tumor tissue segmentation for the automated estimation of oral cancer parameters.
    Sun YN; Wang YY; Chang SC; Wu LW; Tsai ST
    Microsc Res Tech; 2010 Jan; 73(1):5-13. PubMed ID: 19526523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of normalization algorithms for cross-batch color segmentation of histopathological images.
    Hoffman RA; Kothari S; Wang MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():194-7. PubMed ID: 25569930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adversarial Stain Transfer for Histopathology Image Analysis.
    Bentaieb A; Hamarneh G
    IEEE Trans Med Imaging; 2018 Mar; 37(3):792-802. PubMed ID: 29533895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm.
    Bahadure NB; Ray AK; Thethi HP
    J Digit Imaging; 2018 Aug; 31(4):477-489. PubMed ID: 29344753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automatic color segmentation algorithm with application to identification of skin tumor borders.
    Umbaugh SE; Moss RH; Stoecker WV
    Comput Med Imaging Graph; 1992; 16(3):227-35. PubMed ID: 1623498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of images of skin lesions using color and texture information of surface pigmentation.
    Dhawan AP; Sicsu A
    Comput Med Imaging Graph; 1992; 16(3):163-77. PubMed ID: 1623492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of color microscopic images based on bidimensional empirical mode decomposition.
    Chen Y; Wang L; Sun Z; Jiang Y; Zhai G
    Opt Express; 2010 Oct; 18(21):21757-69. PubMed ID: 20941076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images.
    Mouelhi A; Rmili H; Ali JB; Sayadi M; Doghri R; Mrad K
    Comput Methods Programs Biomed; 2018 Oct; 165():37-51. PubMed ID: 30337080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of semi-automated image analysis and manual methods for tissue quantification in pancreatic carcinoma.
    Sims AJ; Bennett MK; Murray A
    Phys Med Biol; 2002 Apr; 47(8):1255-66. PubMed ID: 12030554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stain Color Adaptive Normalization (SCAN) algorithm: Separation and standardization of histological stains in digital pathology.
    Salvi M; Michielli N; Molinari F
    Comput Methods Programs Biomed; 2020 Sep; 193():105506. PubMed ID: 32353672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.
    Rojas-Moraleda R; Xiong W; Halama N; Breitkopf-Heinlein K; Dooley S; Salinas L; Heermann DW; Valous NA
    Med Image Anal; 2017 May; 38():90-103. PubMed ID: 28314191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture based segmentation of epithelial layer from oral histological images.
    Muthu Rama Krishnan M; Choudhary A; Chakraborty C; Ray AK; Paul RR
    Micron; 2011 Aug; 42(6):632-41. PubMed ID: 21493079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of normalization and color features on super-pixel classification: application to cytological image segmentation.
    Bechar MEA; Settouti N; Daho MEH; Adel M; Chikh MA
    Australas Phys Eng Sci Med; 2019 Jun; 42(2):427-441. PubMed ID: 30830650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed From Saturation-Weighted Statistics.
    Li X; Plataniotis KN
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1862-73. PubMed ID: 25706507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
    Shahedi M; Cool DW; Bauman GS; Bastian-Jordan M; Fenster A; Ward AD
    J Digit Imaging; 2017 Dec; 30(6):782-795. PubMed ID: 28342043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized quantification of bone tissue and marrow in stained microscopic images.
    Shi L; Liu S; Wang D; Wong HL; Huang WH; Wang YX; Griffith JF; Leung PC; Ahuja AT
    Cytometry A; 2012 Oct; 81(10):916-21. PubMed ID: 22899564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images.
    Hameed KA; Banumathi A; Ulaganathan G
    Micron; 2015 Dec; 79():29-35. PubMed ID: 26313715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast processing of microscopic images using object-based extended depth of field.
    Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.