BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18003548)

  • 1. Modelling the mechanical properties of human skin: towards a 3D discrete fibre model.
    Jor JW; Nash MP; Nielsen PM; Hunter PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6641-4. PubMed ID: 18003548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
    Gasser TC; Ogden RW; Holzapfel GA
    J R Soc Interface; 2006 Feb; 3(6):15-35. PubMed ID: 16849214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology.
    Stracuzzi A; Britt BR; Mazza E; Ehret AE
    Biomech Model Mechanobiol; 2022 Apr; 21(2):433-454. PubMed ID: 34985590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micromechanically-based, three-dimensional interface finite element for the modelling of the periodontal ligament.
    Genna F
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):243-56. PubMed ID: 17144047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization.
    Lynch B; Bancelin S; Bonod-Bidaud C; Gueusquin JB; Ruggiero F; Schanne-Klein MC; Allain JM
    Acta Biomater; 2017 Mar; 50():302-311. PubMed ID: 28043893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magic angles and fibre stretch in arterial tissue: Insights from the linear theory.
    Horgan CO; Murphy JG
    J Mech Behav Biomed Mater; 2018 Dec; 88():470-477. PubMed ID: 30219741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel computational remodelling algorithm for the probabilistic evolution of collagen fibre dispersion in biaxially strained vascular tissue.
    Çoban G; Çelebi MS
    Math Med Biol; 2017 Dec; 34(4):433-467. PubMed ID: 27614761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of the dermal matrix impacts the biomechanical properties of skin.
    Langton AK; Graham HK; McConnell JC; Sherratt MJ; Griffiths CEM; Watson REB
    Br J Dermatol; 2017 Sep; 177(3):818-827. PubMed ID: 28132410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling non-symmetric collagen fibre dispersion in arterial walls.
    Holzapfel GA; Niestrawska JA; Ogden RW; Reinisch AJ; Schriefl AJ
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the microstructural response to applied deformation in porcine passive skeletal muscle.
    Takaza M; Cooney GM; McManus G; Stafford P; Simms CK
    J Mech Behav Biomed Mater; 2014 Dec; 40():115-126. PubMed ID: 25222870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations.
    Zarei V; Zhang S; Winkelstein BA; Barocas VH
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 28978743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.
    Li K; Ogden RW; Holzapfel GA
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.
    Anssari-Benam A; Tseng YT; Bucchi A
    J Mech Behav Biomed Mater; 2018 Sep; 85():80-93. PubMed ID: 29859418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of constitutive models of arterial layers with distributed collagen fibre orientations.
    Skacel P; Bursa J
    Acta Bioeng Biomech; 2014; 16(3):47-58. PubMed ID: 25308192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2012 Jul; 11(6):869-82. PubMed ID: 22086167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.