These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18003548)

  • 21. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations.
    Pandolfi A; Holzapfel GA
    J Biomech Eng; 2008 Dec; 130(6):061006. PubMed ID: 19045535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biaxial stretch can overcome discrepancy between global and local orientations of wavy collagen fibres.
    Turčanová M; Fischer J; Hermanová M; Bednařík Z; Skácel P; Burša J
    J Biomech; 2023 Dec; 161():111868. PubMed ID: 37976938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imposed state of deformation determines local collagen fibre orientation but not apparent mechanical properties.
    Waldman SD; Sacks MS; Lee JM
    Biomed Sci Instrum; 1999; 35():51-6. PubMed ID: 11143391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the role of crimps in collagen fibers in tendon with a microstructually based finite element model.
    Shim V; Fernandez J; Besier T; Hunter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4871-4. PubMed ID: 23367019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modelling of the fibre-matrix interaction in biaxial loading for hyperelastic soft tissue models.
    Lu YT; Zhu HX; Richmond S; Middleton J
    Int J Numer Method Biomed Eng; 2012 Apr; 28(4):401-11. PubMed ID: 25365655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the tear resistance of skin.
    Yang W; Sherman VR; Gludovatz B; Schaible E; Stewart P; Ritchie RO; Meyers MA
    Nat Commun; 2015 Mar; 6():6649. PubMed ID: 25812485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties.
    Domaschke S; Morel A; Kaufmann R; Hofmann J; Rossi RM; Mazza E; Fortunato G; Ehret AE
    J Mech Behav Biomed Mater; 2020 Apr; 104():103634. PubMed ID: 32174394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of a periodontal ligament construct: cell and fibre alignment induced by shear stress.
    Kim SG; Kim SG; Viechnicki B; Kim S; Nah HD
    J Clin Periodontol; 2011 Dec; 38(12):1130-6. PubMed ID: 22092876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mechanical model of the cornea considering the crimping morphology of collagen fibrils.
    Liu X; Wang L; Ji J; Yao W; Wei W; Fan J; Joshi S; Li D; Fan Y
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2739-46. PubMed ID: 24692124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How changes in interconnectivity affect the bulk properties of articular cartilage: a fibre network study.
    Bilton MA; Thambyah A; Clarke RJ
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1297-1315. PubMed ID: 29777321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The modelling of fibre reorientation in soft tissue.
    Karsaj I; Sansour C; Sorić J
    Biomech Model Mechanobiol; 2009 Oct; 8(5):359-70. PubMed ID: 19005713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibre-matrix interaction in the human annulus fibrosus.
    Guo Z; Shi X; Peng X; Caner F
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):193-205. PubMed ID: 22100094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. M5 mesoscopic and macroscopic models for mesenchymal motion.
    Hillen T
    J Math Biol; 2006 Oct; 53(4):585-616. PubMed ID: 16821068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hyperelastic fibre-reinforced continuum model of healing tendons with distributed collagen fibre orientations.
    Bajuri MN; Isaksson H; Eliasson P; Thompson MS
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1457-1466. PubMed ID: 26951049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro and macro rheology of planar tissues.
    Lokshin O; Lanir Y
    Biomaterials; 2009 Jun; 30(17):3118-27. PubMed ID: 19324407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.