These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18003617)

  • 1. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein.
    Tucker NP; D'Autréaux B; Yousafzai FK; Fairhurst SA; Spiro S; Dixon R
    J Biol Chem; 2008 Jan; 283(2):908-18. PubMed ID: 18003617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the nitric oxide-reactive transcriptional activator NorR.
    D'Autréaux B; Tucker N; Spiro S; Dixon R
    Methods Enzymol; 2008; 437():235-51. PubMed ID: 18433632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR.
    Tucker NP; D'autréaux B; Spiro S; Dixon R
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):191-4. PubMed ID: 16417519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-haem iron centre in the transcription factor NorR senses nitric oxide.
    D'Autréaux B; Tucker NP; Dixon R; Spiro S
    Nature; 2005 Sep; 437(7059):769-72. PubMed ID: 16193057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification.
    Bush M; Ghosh T; Tucker N; Zhang X; Dixon R
    Biochem Soc Trans; 2011 Jan; 39(1):289-93. PubMed ID: 21265790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-responsive interdomain regulation targets the σ54-interaction surface in the enhancer binding protein NorR.
    Bush M; Ghosh T; Tucker N; Zhang X; Dixon R
    Mol Microbiol; 2010 Sep; 77(5):1278-88. PubMed ID: 20624215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria.
    Tucker NP; D'Autréaux B; Studholme DJ; Spiro S; Dixon R
    J Bacteriol; 2004 Oct; 186(19):6656-60. PubMed ID: 15375149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and sigma54 in the nitric oxide stress response.
    Gardner AM; Gessner CR; Gardner PR
    J Biol Chem; 2003 Mar; 278(12):10081-6. PubMed ID: 12529359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the signaling domain of the NO-responsive regulator NorR from Ralstonia eutropha H16 by site-directed mutagenesis.
    Klink A; Elsner B; Strube K; Cramm R
    J Bacteriol; 2007 Apr; 189(7):2743-9. PubMed ID: 17277050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural basis for enhancer-dependent assembly and activation of the AAA transcriptional activator NorR.
    Bush M; Ghosh T; Sawicka M; Moal IH; Bates PA; Dixon R; Zhang X
    Mol Microbiol; 2015 Jan; 95(1):17-30. PubMed ID: 25354037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR.
    Tucker NP; Ghosh T; Bush M; Zhang X; Dixon R
    Nucleic Acids Res; 2010 Mar; 38(4):1182-94. PubMed ID: 19955233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NO-dependent transcriptional activation of gene expression in Ralstonia eutropha H16.
    Cramm R; Büsch A; Strube K
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):182-4. PubMed ID: 16417516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA binding properties of the Escherichia coli nitric oxide sensor NorR: towards an understanding of the regulation of flavorubredoxin expression.
    Tucker N; D'autréaux B; Spiro S; Dixon R
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):181-3. PubMed ID: 15667300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of nitric oxide reduction in Ralstonia eutropha H16.
    Büsch A; Strube K; Friedrich B; Cramm R
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):193-4. PubMed ID: 15667304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of the displaceable heme-axial residue in the EcDos protein, a heme-based sensor from Escherichia coli.
    Gonzalez G; Dioum EM; Bertolucci CM; Tomita T; Ikeda-Saito M; Cheesman MR; Watmough NJ; Gilles-Gonzalez MA
    Biochemistry; 2002 Jul; 41(26):8414-21. PubMed ID: 12081490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii.
    Yoshimitsu K; Takatani N; Miura Y; Watanabe Y; Nakajima H
    FEBS J; 2011 Sep; 278(18):3287-97. PubMed ID: 21752196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR.
    Wickstrum JR; Egan SM
    J Bacteriol; 2004 Sep; 186(18):6277-85. PubMed ID: 15342598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-sensing mechanisms in Escherichia coli.
    Spiro S
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):200-2. PubMed ID: 16417522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor FnrP from Paracoccus denitrificans contains an iron-sulfur cluster and is activated by anoxia: identification of essential cysteine residues.
    Hutchings MI; Crack JC; Shearer N; Thompson BJ; Thomson AJ; Spiro S
    J Bacteriol; 2002 Jan; 184(2):503-8. PubMed ID: 11751828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.