These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 18003647)
1. Fast protein fold estimation from NMR-derived distance restraints. Angyán AF; Perczel A; Pongor S; Gáspári Z Bioinformatics; 2008 Jan; 24(2):272-5. PubMed ID: 18003647 [TBL] [Abstract][Full Text] [Related]
2. Efficient recognition of folds in protein 3D structures by the improved PRIDE algorithm. Gáspári Z; Vlahovicek K; Pongor S Bioinformatics; 2005 Aug; 21(15):3322-3. PubMed ID: 15914542 [TBL] [Abstract][Full Text] [Related]
3. Prelude and Fugue, predicting local protein structure, early folding regions and structural weaknesses. Kwasigroch JM; Rooman M Bioinformatics; 2006 Jul; 22(14):1800-2. PubMed ID: 16682423 [TBL] [Abstract][Full Text] [Related]
4. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings. Wang L; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976 [TBL] [Abstract][Full Text] [Related]
5. DFprot: a webtool for predicting local chain deformability. Garzón JI; Kovacs J; Abagyan R; Chacón P Bioinformatics; 2007 Apr; 23(7):901-2. PubMed ID: 17277334 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the usefulness of protein structure models for molecular replacement. Giorgetti A; Raimondo D; Miele AE; Tramontano A Bioinformatics; 2005 Sep; 21 Suppl 2():ii72-6. PubMed ID: 16204129 [TBL] [Abstract][Full Text] [Related]
7. An algebraic geometry approach to protein structure determination from NMR data. Wang L; Mettu RR; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981 [TBL] [Abstract][Full Text] [Related]
8. On distance and similarity in fold space. Sippl MJ Bioinformatics; 2008 Mar; 24(6):872-3. PubMed ID: 18227113 [TBL] [Abstract][Full Text] [Related]
9. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction. Sasaki TN; Cetin H; Sasai M Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960 [TBL] [Abstract][Full Text] [Related]
10. Assessment of protein folding potentials with an evolutionary method. de Sancho D; Rey A J Chem Phys; 2006 Jul; 125(1):014904. PubMed ID: 16863330 [TBL] [Abstract][Full Text] [Related]
16. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs. Latek D; Kolinski A J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263 [TBL] [Abstract][Full Text] [Related]
17. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us? Zagrovic B; van Gunsteren WF Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239 [TBL] [Abstract][Full Text] [Related]
18. iFold: a platform for interactive folding simulations of proteins. Sharma S; Ding F; Nie H; Watson D; Unnithan A; Lopp J; Pozefsky D; Dokholyan NV Bioinformatics; 2006 Nov; 22(21):2693-4. PubMed ID: 16940324 [TBL] [Abstract][Full Text] [Related]
20. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Shamim MT; Anwaruddin M; Nagarajaram HA Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]