BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18003655)

  • 1. The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress.
    Lewis SM; Cerquozzi S; Graber TE; Ungureanu NH; Andrews M; Holcik M
    Nucleic Acids Res; 2008 Jan; 36(1):168-78. PubMed ID: 18003655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation.
    Henis-Korenblit S; Strumpf NL; Goldstaub D; Kimchi A
    Mol Cell Biol; 2000 Jan; 20(2):496-506. PubMed ID: 10611228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins.
    Henis-Korenblit S; Shani G; Sines T; Marash L; Shohat G; Kimchi A
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5400-5. PubMed ID: 11943866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element.
    Warnakulasuriyarachchi D; Cerquozzi S; Cheung HH; Holcík M
    J Biol Chem; 2004 Apr; 279(17):17148-57. PubMed ID: 14960583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1.
    Nevins TA; Harder ZM; Korneluk RG; Holcík M
    J Biol Chem; 2003 Feb; 278(6):3572-9. PubMed ID: 12458215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of the C-terminal DAP5/p97 domain sheds light on the molecular basis for its processing by caspase cleavage.
    Liberman N; Dym O; Unger T; Albeck S; Peleg Y; Jacobovitch Y; Branzburg A; Eisenstein M; Marash L; Kimchi A
    J Mol Biol; 2008 Nov; 383(3):539-48. PubMed ID: 18722383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.
    Weingarten-Gabbay S; Khan D; Liberman N; Yoffe Y; Bialik S; Das S; Oren M; Kimchi A
    Oncogene; 2014 Jan; 33(5):611-8. PubMed ID: 23318444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes.
    Hanson PJ; Ye X; Qiu Y; Zhang HM; Hemida MG; Wang F; Lim T; Gu A; Cho B; Kim H; Fung G; Granville DJ; Yang D
    Cell Death Differ; 2016 May; 23(5):828-40. PubMed ID: 26586572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA.
    Dave P; George B; Raheja H; Rani P; Behera P; Das S
    J Biol Chem; 2019 Oct; 294(42):15386-15394. PubMed ID: 31455634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation.
    Hundsdoerfer P; Thoma C; Hentze MW
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13421-6. PubMed ID: 16174738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis.
    Marash L; Liberman N; Henis-Korenblit S; Sivan G; Reem E; Elroy-Stein O; Kimchi A
    Mol Cell; 2008 May; 30(4):447-59. PubMed ID: 18450493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The eIF4G-homolog p97 can activate translation independent of caspase cleavage.
    Nousch M; Reed V; Bryson-Richardson RJ; Currie PD; Preiss T
    RNA; 2007 Mar; 13(3):374-84. PubMed ID: 17237356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation.
    Liberman N; Gandin V; Svitkin YV; David M; Virgili G; Jaramillo M; Holcik M; Nagar B; Kimchi A; Sonenberg N
    Nucleic Acids Res; 2015 Apr; 43(7):3764-75. PubMed ID: 25779044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia and ER stress promote Staufen1 expression through an alternative translation mechanism.
    Bonnet-Magnaval F; Philippe C; Van Den Berghe L; Prats H; Touriol C; Lacazette E
    Biochem Biophys Res Commun; 2016 Oct; 479(2):365-371. PubMed ID: 27644878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational control of the interferon regulatory factor 2 mRNA by IRES element.
    Dhar D; Roy S; Das S
    Nucleic Acids Res; 2007; 35(16):5409-21. PubMed ID: 17698501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation.
    Michel YM; Borman AM; Paulous S; Kean KM
    Mol Cell Biol; 2001 Jul; 21(13):4097-109. PubMed ID: 11390639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G.
    Ali IK; McKendrick L; Morley SJ; Jackson RJ
    J Virol; 2001 Sep; 75(17):7854-63. PubMed ID: 11483729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translation initiation factor DAP5 is a regulator of cell survival during mitosis.
    Liberman N; Marash L; Kimchi A
    Cell Cycle; 2009 Jan; 8(2):204-9. PubMed ID: 19158497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein.
    Cornelis S; Tinton SA; Schepens B; Bruynooghe Y; Beyaert R
    Nucleic Acids Res; 2005; 33(10):3095-108. PubMed ID: 15928332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.