These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18003748)

  • 1. Neural agrin controls maturation of the excitation-contraction coupling mechanism in human myotubes developing in vitro.
    Bandi E; Jevsek M; Mars T; Jurdana M; Formaggio E; Sciancalepore M; Fumagalli G; Grubic Z; Ruzzier F; Lorenzon P
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C66-73. PubMed ID: 18003748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures.
    Tanaka H; Furuya T; Kameda N; Kobayashi T; Mizusawa H
    J Muscle Res Cell Motil; 2000; 21(6):507-26. PubMed ID: 11206130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional innervation of cultured human skeletal muscle proceeds by two modes with regard to agrin effects.
    Mars T; King MP; Miranda AF; Walker WF; Mis K; Grubic Z
    Neuroscience; 2003; 118(1):87-97. PubMed ID: 12676140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural agrin changes the electrical properties of developing human skeletal muscle cells.
    Jurdana M; Fumagalli G; Grubic Z; Lorenzon P; Mars T; Sciancalepore M
    Cell Mol Neurobiol; 2009 Feb; 29(1):123-31. PubMed ID: 18807173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle.
    Ullrich ND; Fischer D; Kornblum C; Walter MC; Niggli E; Zorzato F; Treves S
    Hum Mutat; 2011 Mar; 32(3):309-17. PubMed ID: 21294223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle.
    Mis K; Grubic Z; Lorenzon P; Sciancalepore M; Mars T; Pirkmajer S
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28846617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of purified recombinant neural and muscle agrin on skeletal muscle fibers in vivo.
    Bezakova G; Helm JP; Francolini M; Lømo T
    J Cell Biol; 2001 Jun; 153(7):1441-52. PubMed ID: 11425874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation contraction uncoupling by high intracellular [Ca
    Olivera JF; Pizarro G
    J Muscle Res Cell Motil; 2016 Oct; 37(4-5):117-130. PubMed ID: 27344568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle.
    Cong X; Doering J; Mazala DA; Chin ER; Grange RW; Jiang H
    Skelet Muscle; 2016; 6():17. PubMed ID: 27073615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.
    Lainé J; Skoglund G; Fournier E; Tabti N
    Skelet Muscle; 2018 Jan; 8(1):1. PubMed ID: 29304851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers.
    Bezakova G; Lømo T
    J Cell Biol; 2001 Jun; 153(7):1453-63. PubMed ID: 11425875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.
    Nabhani T; Zhu X; Simeoni I; Sorrentino V; Valdivia HH; García J
    Biophys J; 2002 Mar; 82(3):1319-28. PubMed ID: 11867448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle.
    Zhou J; Yi J; Royer L; Launikonis BS; González A; García J; Ríos E
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C539-53. PubMed ID: 16148029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+ influx through alpha1S DHPR may play a role in regulating Ca2+ release from RyR1 in skeletal muscle.
    Shtifman A; Paolini C; López JR; Allen PD; Protasi F
    Am J Physiol Cell Physiol; 2004 Jan; 286(1):C73-8. PubMed ID: 12954602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle.
    Perez CF; López JR; Allen PD
    Am J Physiol Cell Physiol; 2005 Mar; 288(3):C640-9. PubMed ID: 15548569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
    Protasi F; Paolini C; Nakai J; Beam KG; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Dec; 83(6):3230-44. PubMed ID: 12496092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dihydropyridine receptor II-III loop peptides on Ca(2+) release in skinned skeletal muscle fibers.
    Lamb GD; El-Hayek R; Ikemoto N; Stephenson DG
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C891-905. PubMed ID: 11003569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module.
    Lee EH; Lopez JR; Li J; Protasi F; Pessah IN; Kim DH; Allen PD
    Am J Physiol Cell Physiol; 2004 Jan; 286(1):C179-89. PubMed ID: 13679303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.