BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 18003749)

  • 21. Rigor cross-bridges bind to two actin monomers in thin filaments of rabbit psoas muscle.
    Xiao M; Andreev OA; Borejdo J
    J Mol Biol; 1995 Apr; 248(2):294-307. PubMed ID: 7739041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A spin label that binds to myosin heads in muscle fibers with its principal axis parallel to the fiber axis.
    Roopnarine O; Thomas DD
    Biophys J; 1994 Oct; 67(4):1634-45. PubMed ID: 7819495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans.
    Miller MS; Bedrin NG; Callahan DM; Previs MJ; Jennings ME; Ades PA; Maughan DW; Palmer BM; Toth MJ
    J Appl Physiol (1985); 2013 Oct; 115(7):1004-14. PubMed ID: 23887900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area.
    Miller MS; Bedrin NG; Ades PA; Palmer BM; Toth MJ
    Am J Physiol Cell Physiol; 2015 Mar; 308(6):C473-84. PubMed ID: 25567808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bidirectional functional communication between myosin subfragments 1 and 2 in skeletal muscle fibers.
    Kobayashi T; Kosuge S; Sugi H
    Adv Exp Med Biol; 1998; 453():435-40. PubMed ID: 9889855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.
    Brotto MA; Biesiadecki BJ; Brotto LS; Nosek TM; Jin JP
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C567-76. PubMed ID: 16192301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation of the myosin converter domain alters cross-bridge elasticity.
    Köhler J; Winkler G; Schulte I; Scholz T; McKenna W; Brenner B; Kraft T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3557-62. PubMed ID: 11904418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.
    Sugi H; Abe T; Kobayashi T; Chaen S; Ohnuki Y; Saeki Y; Sugiura S
    PLoS One; 2013; 8(5):e63658. PubMed ID: 23691080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate.
    Potma EJ; Stienen GJ
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):1-12. PubMed ID: 8910191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heme-Induced Oxidation of Cysteine Groups of Myofilament Proteins Leads to Contractile Dysfunction of Permeabilized Human Skeletal Muscle Fibres.
    Alvarado G; Tóth A; Csősz É; Kalló G; Dankó K; Csernátony Z; Smith A; Gram M; Akerström B; Édes I; Balla G; Papp Z; Balla J
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.
    Sweeney HL; Stull JT
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):414-8. PubMed ID: 2136951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of a spin-labeled photoaffinity ATP analogue, and its use to specifically photolabel myosin cross-bridges in skeletal muscle fibers.
    Wang D; Luo Y; Cooke R; Grammer J; Pate E; Yount RG
    J Muscle Res Cell Motil; 1999 Nov; 20(8):743-53. PubMed ID: 10730577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related decline in actomyosin structure and function.
    Prochniewicz E; Thompson LV; Thomas DD
    Exp Gerontol; 2007 Oct; 42(10):931-8. PubMed ID: 17706387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myosin head interactions in Ca2+-activated skinned rabbit skeletal muscle fibers.
    Wilson GJ; Shull SE; Naber NI; Cooke R
    J Biochem; 1997 Sep; 122(3):563-71. PubMed ID: 9348085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformation of myosin interdomain interactions during contraction: deductions from muscle fibers using polarized fluorescence.
    Burghardt TP; Cruz-Walker AR; Park S; Ajtai K
    Biochemistry; 2001 Apr; 40(15):4821-33. PubMed ID: 11294650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active shortening protects against stretch-induced force deficits in human skeletal muscle.
    Saripalli AL; Sugg KB; Mendias CL; Brooks SV; Claflin DR
    J Appl Physiol (1985); 2017 May; 122(5):1218-1226. PubMed ID: 28235860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction.
    Song T; McNamara JW; Ma W; Landim-Vieira M; Lee KH; Martin LA; Heiny JA; Lorenz JN; Craig R; Pinto JR; Irving T; Sadayappan S
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33888578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.
    Butcher MT; Chase PB; Hermanson JW; Clark AN; Brunet NM; Bertram JE
    Am J Physiol Regul Integr Comp Physiol; 2010 Oct; 299(4):R996-R1005. PubMed ID: 20702801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myosin regulatory domain orientation in skeletal muscle fibers: application of novel electron paramagnetic resonance spectral decomposition and molecular modeling methods.
    Baumann BA; Liang H; Sale K; Hambly BD; Fajer PG
    Biophys J; 2004 May; 86(5):3030-41. PubMed ID: 15111417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.