These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18003838)

  • 1. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering.
    Koester MP; Müller O; Pollerberg GE
    J Neurosci; 2007 Nov; 27(46):12590-600. PubMed ID: 18003838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APC2 plays an essential role in axonal projections through the regulation of microtubule stability.
    Shintani T; Ihara M; Tani S; Sakuraba J; Sakuta H; Noda M
    J Neurosci; 2009 Sep; 29(37):11628-40. PubMed ID: 19759310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization.
    Hahn CM; Kleinholz H; Koester MP; Grieser S; Thelen K; Pollerberg GE
    Neuroscience; 2005; 134(2):449-65. PubMed ID: 15964697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular localization of the tumor suppressor protein APC in developing cultured neurons.
    Shimomura A; Kohu K; Akiyama T; Senda T
    Neurosci Lett; 2005 Feb; 375(2):81-6. PubMed ID: 15670646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli.
    Purro SA; Ciani L; Hoyos-Flight M; Stamatakou E; Siomou E; Salinas PC
    J Neurosci; 2008 Aug; 28(34):8644-54. PubMed ID: 18716223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branched actin networks are assembled on microtubules by adenomatous polyposis coli for targeted membrane protrusion.
    Efimova N; Yang C; Chia JX; Li N; Lengner CJ; Neufeld KL; Svitkina TM
    J Cell Biol; 2020 Sep; 219(9):. PubMed ID: 32597939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly.
    Preitner N; Quan J; Nowakowski DW; Hancock ML; Shi J; Tcherkezian J; Young-Pearse TL; Flanagan JG
    Cell; 2014 Jul; 158(2):368-382. PubMed ID: 25036633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenomatous polyposis coli regulates axon arborization and cytoskeleton organization via its N-terminus.
    Chen Y; Tian X; Kim WY; Snider WD
    PLoS One; 2011; 6(9):e24335. PubMed ID: 21915313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparan sulfate proteoglycan expression in the optic chiasm of mouse embryos.
    Chung KY; Leung KM; Lin L; Chan SO
    J Comp Neurol; 2001 Jul; 436(2):236-47. PubMed ID: 11438927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones.
    Pavez M; Thompson AC; Arnott HJ; Mitchell CB; D'Atri I; Don EK; Chilton JK; Scott EK; Lin JY; Young KM; Gasperini RJ; Foa L
    J Neurosci; 2019 Jun; 39(26):5095-5114. PubMed ID: 31023836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions.
    Ketschek AR; Jones SL; Gallo G
    Dev Neurobiol; 2007 Sep; 67(10):1305-20. PubMed ID: 17638383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones.
    Mack TG; Koester MP; Pollerberg GE
    Mol Cell Neurosci; 2000 Jan; 15(1):51-65. PubMed ID: 10662505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O; Campbell G; Bird MM
    J Neurocytol; 2003 Nov; 32(9):1077-89. PubMed ID: 15044840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules.
    Hur EM; Saijilafu ; Lee BD; Kim SJ; Xu WL; Zhou FQ
    Genes Dev; 2011 Sep; 25(18):1968-81. PubMed ID: 21937714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system.
    Erkman L; Yates PA; McLaughlin T; McEvilly RJ; Whisenhunt T; O'Connell SM; Krones AI; Kirby MA; Rapaport DH; Bermingham JR; O'Leary DD; Rosenfeld MG
    Neuron; 2000 Dec; 28(3):779-92. PubMed ID: 11163266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands.
    Mann F; Ray S; Harris W; Holt C
    Neuron; 2002 Aug; 35(3):461-73. PubMed ID: 12165469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule redistribution in growth cones elicited by focal inactivation of kinesin-5.
    Nadar VC; Lin S; Baas PW
    J Neurosci; 2012 Apr; 32(17):5783-94. PubMed ID: 22539840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K
    Huang CY; Lien CC; Cheng CF; Yen TY; Chen CJ; Tsaur ML
    J Neurosci; 2017 Apr; 37(17):4433-4449. PubMed ID: 28320840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons.
    Zelina P; Avci HX; Thelen K; Pollerberg GE
    Development; 2005 Aug; 132(16):3609-18. PubMed ID: 16033798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.