These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 18003855)

  • 1. Diabetic nephropathy: nitric oxide and renal medullary hypoxia.
    Pollock JS; Carmines PK
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F28-9. PubMed ID: 18003855
    [No Abstract]   [Full Text] [Related]  

  • 2. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability.
    Palm F; Friederich M; Carlsson PO; Hansell P; Teerlink T; Liss P
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F30-7. PubMed ID: 17942569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide decreases renal medullary Na+, K+-ATPase activity through cyclic GMP-protein kinase G dependent mechanism.
    Bełtowski J; Marciniak A; Wójcicka G; Górny D
    J Physiol Pharmacol; 2003 Jun; 54(2):191-210. PubMed ID: 12832721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy.
    Palm F
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):997-1001. PubMed ID: 17002679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide.
    Koivisto A; Pittner J; Froelich M; Persson AE
    Kidney Int; 1999 Jun; 55(6):2368-75. PubMed ID: 10354284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dual role of nitric oxide in the pathogenesis of diabetic nephropathy].
    Ksiazek K; Witowski J
    Przegl Lek; 2002; 59(3):153-7. PubMed ID: 12184028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production.
    Prabhakar S; Starnes J; Shi S; Lonis B; Tran R
    J Am Soc Nephrol; 2007 Nov; 18(11):2945-52. PubMed ID: 17928507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide in diabetic nephropathy.
    Craven PA; DeRubertis FR; Melhem M
    Kidney Int Suppl; 1997 Sep; 60():S46-53. PubMed ID: 9285902
    [No Abstract]   [Full Text] [Related]  

  • 11. Leptin decreases renal medullary Na(+), K(+)-ATPase activity through phosphatidylinositol 3-kinase dependent mechanism.
    Bełtowski J; Marciniak A; Wójcicka G
    J Physiol Pharmacol; 2004 Jun; 55(2):391-407. PubMed ID: 15213361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetes-induced alterations in renal medullary microcirculation and metabolism.
    Nordquist L; Palm F
    Curr Diabetes Rev; 2007 Feb; 3(1):53-65. PubMed ID: 18220656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: behaviour of endothelial cells faced with hypoxia.
    Paternotte E; Gaucher C; Labrude P; Stoltz JF; Menu P
    Biomed Mater Eng; 2008; 18(4-5):295-9. PubMed ID: 19065037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy.
    Satoh M; Fujimoto S; Haruna Y; Arakawa S; Horike H; Komai N; Sasaki T; Tsujioka K; Makino H; Kashihara N
    Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide and reactive oxygen species in renal medulla pathophysiology - so small yet so special: the renal medulla.
    Liu N; Patzak A; Sendeski MM
    Acta Physiol (Oxf); 2013 Jun; 208(2):144-7. PubMed ID: 23374156
    [No Abstract]   [Full Text] [Related]  

  • 16. Hypoxia-inducible factor-1alpha under the control of nitric oxide.
    Brüne B; Zhou J
    Methods Enzymol; 2007; 435():463-78. PubMed ID: 17998069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide -- superoxide cooperation in the regulation of renal Na(+),K(+)-ATPase.
    Bełtowski J; Marciniak A; Jamroz-Wiśniewska A; Borkowska E
    Acta Biochim Pol; 2004; 51(4):933-42. PubMed ID: 15625565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia of the renal medulla--its implications for disease.
    Brezis M; Rosen S
    N Engl J Med; 1995 Mar; 332(10):647-55. PubMed ID: 7845430
    [No Abstract]   [Full Text] [Related]  

  • 19. Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin.
    Bełtowski J; Wójcicka G; Jamroz-Wiśniewska A; Wojtak A
    Peptides; 2010 Jan; 31(1):155-63. PubMed ID: 19854228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.).
    Mariee AD; Abd-Allah GM; El-Yamany MF
    Biotechnol Appl Biochem; 2009 Mar; 52(Pt 3):227-32. PubMed ID: 18588510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.