BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18003885)

  • 1. Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation.
    Zhang L; Fried FB; Guo H; Friedman AD
    Blood; 2008 Feb; 111(3):1193-200. PubMed ID: 18003885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression.
    Bernardin-Fried F; Kummalue T; Leijen S; Collector MI; Ravid K; Friedman AD
    J Biol Chem; 2004 Apr; 279(15):15678-87. PubMed ID: 14747476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3.
    Guo H; Friedman AD
    J Biol Chem; 2011 Jan; 286(1):208-15. PubMed ID: 21059642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AML1 stimulates G1 to S progression via its transactivation domain.
    Bernardin F; Friedman AD
    Oncogene; 2002 May; 21(20):3247-52. PubMed ID: 12082641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of RUNX1/AML1 during the G2/M transition.
    Wang S; Zhang Y; Soosairajah J; Kraft AS
    Leuk Res; 2007 Jun; 31(6):839-51. PubMed ID: 17023045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction.
    Fujimoto T; Anderson K; Jacobsen SE; Nishikawa SI; Nerlov C
    EMBO J; 2007 May; 26(9):2361-70. PubMed ID: 17431401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varicella-zoster virus Fc receptor component gI is phosphorylated on its endodomain by a cyclin-dependent kinase.
    Ye M; Duus KM; Peng J; Price DH; Grose C
    J Virol; 1999 Feb; 73(2):1320-30. PubMed ID: 9882337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3.
    Peterson LF; Boyapati A; Ranganathan V; Iwama A; Tenen DG; Tsai S; Zhang DE
    Mol Cell Biol; 2005 Dec; 25(23):10205-19. PubMed ID: 16287839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.
    Risal S; Adhikari D; Liu K
    Methods Mol Biol; 2016; 1336():155-66. PubMed ID: 26231715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks.
    Upton JW; van Dyk LF; Speck SH
    Virology; 2005 Oct; 341(2):271-83. PubMed ID: 16102793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation.
    Qiao M; Shapiro P; Fosbrink M; Rus H; Kumar R; Passaniti A
    J Biol Chem; 2006 Mar; 281(11):7118-28. PubMed ID: 16407259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties.
    Saville MK; Watson RJ
    Oncogene; 1998 Nov; 17(21):2679-89. PubMed ID: 9840932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes.
    Sarcevic B; Lilischkis R; Sutherland RL
    J Biol Chem; 1997 Dec; 272(52):33327-37. PubMed ID: 9407125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1.
    Chen S; Xu Y; Yuan X; Bubley GJ; Balk SP
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15969-74. PubMed ID: 17043241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous cdk4 overcomes reduced cdk4 RNA and inhibition of G1 progression in hematopoietic cells expressing a dominant-negative CBF - a model for overcoming inhibition of proliferation by CBF oncoproteins.
    Lou J; Cao W; Bernardin F; Ayyanathan K; RauscherIII FJ; Friedman AD
    Oncogene; 2000 May; 19(22):2695-703. PubMed ID: 10851069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclins and CDKS in development and cancer: lessons from genetically modified mice.
    Santamaria D; Ortega S
    Front Biosci; 2006 Jan; 11():1164-88. PubMed ID: 16146805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5.
    Meijer L; Borgne A; Mulner O; Chong JP; Blow JJ; Inagaki N; Inagaki M; Delcros JG; Moulinoux JP
    Eur J Biochem; 1997 Jan; 243(1-2):527-36. PubMed ID: 9030781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meiotic inactivation of Xenopus Myt1 by CDK/XRINGO, but not CDK/cyclin, via site-specific phosphorylation.
    Ruiz EJ; Hunt T; Nebreda AR
    Mol Cell; 2008 Oct; 32(2):210-20. PubMed ID: 18951089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Downregulation of cyclin D1 alters cdk 4- and cdk 2-specific phosphorylation of retinoblastoma protein.
    Yu B; Lane ME; Pestell RG; Albanese C; Wadler S
    Mol Cell Biol Res Commun; 2000 Jun; 3(6):352-9. PubMed ID: 11032757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct activities of the related protein kinases Cdk1 and Ime2.
    Sawarynski KE; Kaplun A; Tzivion G; Brush GS
    Biochim Biophys Acta; 2007 Mar; 1773(3):450-6. PubMed ID: 17137646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.