BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 18003916)

  • 21. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.
    Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C
    Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A putative molybdate transporter LjMOT1 is required for molybdenum transport in Lotus japonicus.
    Gao JS; Wu FF; Shen ZL; Meng Y; Cai YP; Lin Y
    Physiol Plant; 2016 Nov; 158(3):331-340. PubMed ID: 27535112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a mutant of Chlamydomonas reinhardtii deficient in the molybdenum cofactor.
    Li W; Fingrut DR; Maxwell DP
    Physiol Plant; 2009 Jul; 136(3):336-50. PubMed ID: 19470097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance.
    Forsberg SK; Andreatta ME; Huang XY; Danku J; Salt DE; Carlborg Ö
    PLoS Genet; 2015 Nov; 11(11):e1005648. PubMed ID: 26599497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molybdenum metabolism in plants.
    Tejada-Jiménez M; Chamizo-Ampudia A; Galván A; Fernández E; Llamas Á
    Metallomics; 2013 Sep; 5(9):1191-203. PubMed ID: 23800757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molybdate transport through the plant sulfate transporter SHST1.
    Fitzpatrick KL; Tyerman SD; Kaiser BN
    FEBS Lett; 2008 Apr; 582(10):1508-13. PubMed ID: 18396170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues.
    Lowry DB; Sheng CC; Zhu Z; Juenger TE; Lahner B; Salt DE; Willis JH
    PLoS One; 2012; 7(1):e30730. PubMed ID: 22292026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Getting the most sulfate from soil: Regulation of sulfate uptake transporters in Arabidopsis.
    Rouached H; Secco D; Arpat AB
    J Plant Physiol; 2009 Jun; 166(9):893-902. PubMed ID: 19375816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient.
    Poormohammad Kiani S; Trontin C; Andreatta M; Simon M; Robert T; Salt DE; Loudet O
    PLoS Genet; 2012; 8(7):e1002814. PubMed ID: 22807689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature.
    Kataoka T; Hayashi N; Yamaya T; Takahashi H
    Plant Physiol; 2004 Dec; 136(4):4198-204. PubMed ID: 15531709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana.
    Shen X; Pettersson M; Rönnegård L; Carlborg Ö
    PLoS Genet; 2012; 8(8):e1002839. PubMed ID: 22876191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.
    Li G; Tillard P; Gojon A; Maurel C
    Plant Cell Physiol; 2016 Apr; 57(4):733-42. PubMed ID: 26823528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfur-Responsive Elements in the 3'-Nontranscribed Intergenic Region Are Essential for the Induction of SULFATE TRANSPORTER 2;1 Gene Expression in Arabidopsis Roots under Sulfur Deficiency.
    Maruyama-Nakashita A; Watanabe-Takahashi A; Inoue E; Yamaya T; Saito K; Takahashi H
    Plant Cell; 2015 Apr; 27(4):1279-96. PubMed ID: 25855406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of sulfate transport and assimilation in plants.
    Takahashi H
    Int Rev Cell Mol Biol; 2010; 281():129-59. PubMed ID: 20460185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2.
    Barberon M; Berthomieu P; Clairotte M; Shibagaki N; Davidian JC; Gosti F
    New Phytol; 2008; 180(3):608-619. PubMed ID: 18761637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A reevaluation of the contribution of NRT1.1 to nitrate uptake in Arabidopsis under low-nitrate supply.
    Ye JY; Tian WH; Jin CW
    FEBS Lett; 2019 Aug; 593(15):2051-2059. PubMed ID: 31172512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency.
    Gao H; Xie W; Yang C; Xu J; Li J; Wang H; Chen X; Huang CF
    New Phytol; 2018 Jan; 217(1):179-193. PubMed ID: 28913895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat.
    Shinmachi F; Buchner P; Stroud JL; Parmar S; Zhao FJ; McGrath SP; Hawkesford MJ
    Plant Physiol; 2010 May; 153(1):327-36. PubMed ID: 20219830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination.
    Takahashi H
    J Exp Bot; 2019 Aug; 70(16):4075-4087. PubMed ID: 30907420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AtCHX13 is a plasma membrane K+ transporter.
    Zhao J; Cheng NH; Motes CM; Blancaflor EB; Moore M; Gonzales N; Padmanaban S; Sze H; Ward JM; Hirschi KD
    Plant Physiol; 2008 Oct; 148(2):796-807. PubMed ID: 18676662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.