These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 18004453)
61. Current molecular design of intelligent drugs and imaging probes targeting tumor-specific microenvironments. Tanabe K; Zhang Z; Ito T; Hatta H; Nishimoto S Org Biomol Chem; 2007 Dec; 5(23):3745-57. PubMed ID: 18004453 [TBL] [Abstract][Full Text] [Related]
62. [Molecular design of hypoxic tumor cell-targeting drugs and imaging probes]. Tanabe K; Ito T; Nishimoto S Tanpakushitsu Kakusan Koso; 2007 Oct; 52(13 Suppl):1588-93. PubMed ID: 18051384 [No Abstract] [Full Text] [Related]
63. Design of anticancer prodrugs for reductive activation. Chen Y; Hu L Med Res Rev; 2009 Jan; 29(1):29-64. PubMed ID: 18688784 [TBL] [Abstract][Full Text] [Related]
64. New radiosensitizing regimens, drugs, prodrugs, and candidates. Vallerga AK; Zarling DA; Kinsella TJ Clin Adv Hematol Oncol; 2004 Dec; 2(12):793-805. PubMed ID: 16166960 [TBL] [Abstract][Full Text] [Related]
66. What "helps" tumors evade vascular targeting treatment? Si ZC; Liu J Chin Med J (Engl); 2008 May; 121(9):844-9. PubMed ID: 18701052 [TBL] [Abstract][Full Text] [Related]
67. Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Cao Y Adv Cancer Res; 2008; 100():113-31. PubMed ID: 18620094 [TBL] [Abstract][Full Text] [Related]
68. Provascular strategy: targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Sonveaux P Radiother Oncol; 2008 Mar; 86(3):300-13. PubMed ID: 18313779 [TBL] [Abstract][Full Text] [Related]
69. Strategies on the development of small molecule anticancer drugs for targeted therapy. Lu YH; Gao XQ; Wu M; Zhang-Negrerie D; Gao Q Mini Rev Med Chem; 2011 Jun; 11(7):611-24. PubMed ID: 21699492 [TBL] [Abstract][Full Text] [Related]
70. [Molecular-targeted therapy for malignant glioma]. Yamanaka R Brain Nerve; 2009 Feb; 61(2):177-88. PubMed ID: 19235468 [TBL] [Abstract][Full Text] [Related]
71. Molecular basis of therapeutic approaches to gastric cancer. Wu K; Nie Y; Guo C; Chen Y; Ding J; Fan D J Gastroenterol Hepatol; 2009 Jan; 24(1):37-41. PubMed ID: 19196394 [TBL] [Abstract][Full Text] [Related]
72. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Gindy ME; Prud'homme RK Expert Opin Drug Deliv; 2009 Aug; 6(8):865-78. PubMed ID: 19637974 [TBL] [Abstract][Full Text] [Related]
73. Ligand-based targeted therapy for cancer tissue. Das M; Mohanty C; Sahoo SK Expert Opin Drug Deliv; 2009 Mar; 6(3):285-304. PubMed ID: 19327045 [TBL] [Abstract][Full Text] [Related]
74. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Juillerat-Jeanneret L Drug Discov Today; 2008 Dec; 13(23-24):1099-106. PubMed ID: 18848640 [TBL] [Abstract][Full Text] [Related]
75. Progress and challenges in the identification of biomarkers for EGFR and VEGFR targeting anticancer agents. Le Tourneau C; Vidal L; Siu LL Drug Resist Updat; 2008 Jun; 11(3):99-109. PubMed ID: 18515176 [TBL] [Abstract][Full Text] [Related]
76. The future of targeted therapies in ovarian cancer. Banerjee S; Gore M Oncologist; 2009 Jul; 14(7):706-16. PubMed ID: 19592450 [TBL] [Abstract][Full Text] [Related]
77. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Garcia-Echeverria C; Sellers WR Oncogene; 2008 Sep; 27(41):5511-26. PubMed ID: 18794885 [TBL] [Abstract][Full Text] [Related]