BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18004817)

  • 1. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots.
    Ali EM; Zheng Y; Yu HH; Ying JY
    Anal Chem; 2007 Dec; 79(24):9452-8. PubMed ID: 18004817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots.
    Zhu X; Zhao Z; Chi X; Gao J
    Analyst; 2013 Jun; 138(11):3230-7. PubMed ID: 23604099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots.
    Wang X; Lv Y; Hou X
    Talanta; 2011 Apr; 84(2):382-6. PubMed ID: 21376961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
    Chen J; Zheng A; Gao Y; He C; Wu G; Chen Y; Kai X; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):1044-52. PubMed ID: 17660001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive and rapid lead sensing in water based on environmental friendly and high luminescent L-glutathione-capped-ZnSe quantum dots.
    Cai Z; Shi B; Zhao L; Ma M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():909-14. PubMed ID: 22902934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands.
    Liu YF; Yu JS
    J Colloid Interface Sci; 2009 May; 333(2):690-8. PubMed ID: 19215940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes.
    Wu CS; Khaing Oo MK; Fan X
    ACS Nano; 2010 Oct; 4(10):5897-904. PubMed ID: 20925347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II).
    Xia YS; Zhu CQ
    Talanta; 2008 Mar; 75(1):215-21. PubMed ID: 18371870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image.
    Jiang C; Xu S; Yang D; Zhang F; Wang W
    Luminescence; 2007; 22(5):430-7. PubMed ID: 17492630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue.
    Shen Y; Liu S; Kong L; Tan X; He Y; Yang J
    Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of highly fluorescent glutathione-capped Zn(x)Hg(1-x)Se quantum dot and its application for sensing copper ion.
    Liu FC; Chen YM; Lin JH; Tseng WL
    J Colloid Interface Sci; 2009 Sep; 337(2):414-9. PubMed ID: 19524936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the interaction of CdTe quantum dots with coumaric acid and caffeic acid based on fluorescence reversible tune.
    Fan X; Liu S; He Y
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):23-30. PubMed ID: 21816585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection.
    Zhao D; Chan WH; He Z; Qiu T
    Anal Chem; 2009 May; 81(9):3537-43. PubMed ID: 19351144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection.
    Choi JH; Chen KH; Strano MS
    J Am Chem Soc; 2006 Dec; 128(49):15584-5. PubMed ID: 17147356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the effect of physiological cations on quantum dots by using single-particle detection.
    Zhang CY; Li D
    Analyst; 2010 Sep; 135(9):2355-9. PubMed ID: 20603686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution.
    Shang ZB; Wang Y; Jin WJ
    Talanta; 2009 Apr; 78(2):364-9. PubMed ID: 19203596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy.
    Dong C; Qian H; Fang N; Ren J
    J Phys Chem B; 2006 Jun; 110(23):11069-75. PubMed ID: 16771367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.
    Li Q; Tan X; Li J; Pan L; Liu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():10-5. PubMed ID: 25659737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.