These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
3. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. Fan M; Brolo AG Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides. Misra TK; Liu CY J Colloid Interface Sci; 2008 Oct; 326(2):411-9. PubMed ID: 18657823 [TBL] [Abstract][Full Text] [Related]
5. Gold-ligand interaction studies of water-soluble aminoalcohol capped gold nanoparticles by NMR. Porta F; Krpetić Z; Prati L; Gaiassi A; Scarì G Langmuir; 2008 Jul; 24(14):7061-4. PubMed ID: 18549254 [TBL] [Abstract][Full Text] [Related]
6. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Zhao W; Lin L; Hsing IM Bioconjug Chem; 2009 Jun; 20(6):1218-22. PubMed ID: 19425573 [TBL] [Abstract][Full Text] [Related]
7. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates. Gentilini C; Evangelista F; Rudolf P; Franchi P; Lucarini M; Pasquato L J Am Chem Soc; 2008 Nov; 130(46):15678-82. PubMed ID: 18950162 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Yang T; Li Z; Wang L; Guo C; Sun Y Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715 [TBL] [Abstract][Full Text] [Related]
9. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
10. [Surface-enhanced Raman spectroscopic studies on the thiophenol adsorbed on novel Ag-Au alloy nanoparticles]. Wang M; Yao JL; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1136-9. PubMed ID: 17763776 [TBL] [Abstract][Full Text] [Related]
11. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Polavarapu L; Xu QH Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation. Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716 [TBL] [Abstract][Full Text] [Related]
13. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Aryal S; B K C R; Dharmaraj N; Bhattarai N; Kim CH; Kim HY Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):160-3. PubMed ID: 15955726 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis and functionalization of water-soluble gold nanoparticles for a bioprobe. Wangoo N; Bhasin KK; Boro R; Suri CR Anal Chim Acta; 2008 Mar; 610(1):142-8. PubMed ID: 18267151 [TBL] [Abstract][Full Text] [Related]
16. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Liu X; Atwater M; Wang J; Huo Q Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536 [TBL] [Abstract][Full Text] [Related]
17. A colorimetric and surface-enhanced Raman scattering dual-signal sensor for Hg2+ based on Bismuthiol II-capped gold nanoparticles. Duan J; Yang M; Lai Y; Yuan J; Zhan J Anal Chim Acta; 2012 Apr; 723():88-93. PubMed ID: 22444578 [TBL] [Abstract][Full Text] [Related]
18. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236 [TBL] [Abstract][Full Text] [Related]
19. Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. Misra TK; Chen TS; Liu CY J Colloid Interface Sci; 2006 May; 297(2):584-8. PubMed ID: 16343525 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Husseiny MI; El-Aziz MA; Badr Y; Mahmoud MA Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1003-6. PubMed ID: 17084659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]