These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18004900)

  • 1. Graphene nanostrip digital memory device.
    Gunlycke D; Areshkin DA; Li J; Mintmire JW; White CT
    Nano Lett; 2007 Dec; 7(12):3608-11. PubMed ID: 18004900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters.
    Magno M; Hagelberg F
    J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects.
    Areshkin DA; Gunlycke D; White CT
    Nano Lett; 2007 Jan; 7(1):204-10. PubMed ID: 17212465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon.
    Zhao Z; Zhai X; Jin G
    J Phys Condens Matter; 2012 Mar; 24(9):095302. PubMed ID: 22316566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of spin currents by a three-terminal zigzag graphene nanoribbon junction.
    Zhang L
    J Phys Condens Matter; 2013 Jan; 25(3):035303. PubMed ID: 23234882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Half-metallic zigzag carbon nanotube dots.
    Hod O; Scuseria GE
    ACS Nano; 2008 Nov; 2(11):2243-9. PubMed ID: 19206389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic response of zigzag nanoribbons under electric fields.
    Culchac FJ; Capaz RB; Costa AT; Latgé A
    J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons.
    Hod O; Barone V; Peralta JE; Scuseria GE
    Nano Lett; 2007 Aug; 7(8):2295-9. PubMed ID: 17628112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic properties of a graphene antidot in magnetic fields.
    Park PS; Kim SC; Yang SR
    J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-selective carbon nanoclusters as precursors to the growth of epitaxial graphene.
    Wang B; Ma X; Caffio M; Schaub R; Li WX
    Nano Lett; 2011 Feb; 11(2):424-30. PubMed ID: 21247214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water on graphene surfaces.
    Gordillo MC; Martí J
    J Phys Condens Matter; 2010 Jul; 22(28):284111. PubMed ID: 21399283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Templated growth of covalently bonded three-dimensional carbon nanotube networks originated from graphene.
    Fu Y; Carlberg B; Lindahl N; Lindvall N; Bielecki J; Matic A; Song Y; Hu Z; Lai Z; Ye L; Sun J; Zhang Y; Zhang Y; Liu J
    Adv Mater; 2012 Mar; 24(12):1576-81. PubMed ID: 22344864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action-derived molecular dynamics simulations for the migration and coalescence of vacancies in graphene and carbon nanotubes.
    Lee AT; Ryu B; Lee IH; Chang KJ
    J Phys Condens Matter; 2014 Mar; 26(11):115303. PubMed ID: 24590224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.