These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 18005074)
1. Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Grant A; Hoops D; Labelle-Dumais C; Prévost M; Rajabi H; Kolb B; Stewart J; Arvanitogiannis A; Flores C Eur J Neurosci; 2007 Dec; 26(11):3215-28. PubMed ID: 18005074 [TBL] [Abstract][Full Text] [Related]
2. Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Flores C; Manitt C; Rodaros D; Thompson KM; Rajabi H; Luk KC; Tritsch NX; Sadikot AF; Stewart J; Kennedy TE Mol Psychiatry; 2005 Jun; 10(6):606-12. PubMed ID: 15534618 [TBL] [Abstract][Full Text] [Related]
3. Post-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice. Grant A; Speed Z; Labelle-Dumais C; Flores C Eur J Neurosci; 2009 Oct; 30(7):1318-28. PubMed ID: 19788579 [TBL] [Abstract][Full Text] [Related]
4. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. Xu B; Goldman JS; Rymar VV; Forget C; Lo PS; Bull SJ; Vereker E; Barker PA; Trudeau LE; Sadikot AF; Kennedy TE Neuroscience; 2010 Aug; 169(2):932-49. PubMed ID: 20493932 [TBL] [Abstract][Full Text] [Related]
5. Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Yetnikoff L; Eng C; Benning S; Flores C Eur J Neurosci; 2010 Apr; 31(7):1292-302. PubMed ID: 20345916 [TBL] [Abstract][Full Text] [Related]
6. Differences in behavioural effects of amphetamine and dopamine-related gene expression in wild-type and homozygous CCK2 receptor deficient mice. Rünkorg K; Värv S; Matsui T; Kõks S; Vasar E Neurosci Lett; 2006 Oct; 406(1-2):17-22. PubMed ID: 16916582 [TBL] [Abstract][Full Text] [Related]
7. Localization of immunoreactivity for deleted in colorectal cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents. Osborne PB; Halliday GM; Cooper HM; Keast JR Neuroscience; 2005; 131(3):671-81. PubMed ID: 15730872 [TBL] [Abstract][Full Text] [Related]
8. The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. Manitt C; Mimee A; Eng C; Pokinko M; Stroh T; Cooper HM; Kolb B; Flores C J Neurosci; 2011 Jun; 31(23):8381-94. PubMed ID: 21653843 [TBL] [Abstract][Full Text] [Related]
9. Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Dalley JW; Theobald DE; Pereira EA; Li PM; Robbins TW Psychopharmacology (Berl); 2002 Nov; 164(3):329-40. PubMed ID: 12424557 [TBL] [Abstract][Full Text] [Related]
10. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Schank JR; Ventura R; Puglisi-Allegra S; Alcaro A; Cole CD; Liles LC; Seeman P; Weinshenker D Neuropsychopharmacology; 2006 Oct; 31(10):2221-30. PubMed ID: 16395294 [TBL] [Abstract][Full Text] [Related]
11. Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Pokinko M; Moquin L; Torres-Berrío A; Gratton A; Flores C Psychopharmacology (Berl); 2015 Oct; 232(20):3719-29. PubMed ID: 26264903 [TBL] [Abstract][Full Text] [Related]
12. Monoaminergic dysregulation in glutathione-deficient mice: possible relevance to schizophrenia? Jacobsen JP; Rodriguiz RM; Mørk A; Wetsel WC Neuroscience; 2005; 132(4):1055-72. PubMed ID: 15857710 [TBL] [Abstract][Full Text] [Related]
13. Altered netrin-1 receptor expression in dopamine terminal regions following neonatal ventral hippocampal lesions in the rat. Flores C; Bhardwaj SK; Labelle-Dumais C; Srivastava LK Synapse; 2009 Jan; 63(1):54-60. PubMed ID: 18932228 [TBL] [Abstract][Full Text] [Related]
14. In vivo evidence that genetic background controls impulse-dependent dopamine release induced by amphetamine in the nucleus accumbens. Ventura R; Alcaro A; Mandolesi L; Puglisi-Allegra S J Neurochem; 2004 Apr; 89(2):494-502. PubMed ID: 15056292 [TBL] [Abstract][Full Text] [Related]
15. Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Berridge CW; Stalnaker TA Synapse; 2002 Dec; 46(3):140-9. PubMed ID: 12325041 [TBL] [Abstract][Full Text] [Related]
16. Alterations in locomotor activity after microinjections of GBR-12909, selective dopamine antagonists or neurotensin into the medial prefrontal cortex. Radcliffe RA; Erwin VG J Pharmacol Exp Ther; 1996 Jun; 277(3):1467-76. PubMed ID: 8667212 [TBL] [Abstract][Full Text] [Related]
18. Cholecystokinin2 receptor-deficient mice display altered function of brain dopaminergic system. Kõks S; Volke V; Veraksits A; Rünkorg K; Sillat T; Abramov U; Bourin M; Huotari M; Männistö PT; Matsui T; Vasar E Psychopharmacology (Berl); 2001 Nov; 158(2):198-204. PubMed ID: 11702094 [TBL] [Abstract][Full Text] [Related]
19. Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Ventura R; Alcaro A; Cabib S; Conversi D; Mandolesi L; Puglisi-Allegra S Neuropsychopharmacology; 2004 Jan; 29(1):72-80. PubMed ID: 12968132 [TBL] [Abstract][Full Text] [Related]
20. Sparing of behavior and basal extracellular dopamine after 6-hydroxydopamine lesions of the nigrostriatal pathway in rats exposed to a prelesion sensitizing regimen of amphetamine. Moroz IA; Peciña S; Schallert T; Stewart J Exp Neurol; 2004 Sep; 189(1):78-93. PubMed ID: 15296838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]