BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 18005197)

  • 1. Epigenetic alteration of the Wnt inhibitory factor-1 promoter occurs early in the carcinogenesis of Barrett's esophagus.
    Clément G; Guilleret I; He B; Yagui-Beltrán A; Lin YC; You L; Xu Z; Shi Y; Okamoto J; Benhattar J; Jablons D
    Cancer Sci; 2008 Jan; 99(1):46-53. PubMed ID: 18005197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's, and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use.
    Kaz AM; Wong CJ; Varadan V; Willis JE; Chak A; Grady WM
    Clin Epigenetics; 2016; 8():111. PubMed ID: 27795744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The negative regulators of Wnt pathway-DACH1, DKK1, and WIF1 are methylated in oral and oropharyngeal cancer and WIF1 methylation predicts shorter survival.
    Paluszczak J; Sarbak J; Kostrzewska-Poczekaj M; Kiwerska K; Jarmuż-Szymczak M; Grenman R; Mielcarek-Kuchta D; Baer-Dubowska W
    Tumour Biol; 2015 Apr; 36(4):2855-61. PubMed ID: 25487617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrant vimentin methylation is characteristic of upper gastrointestinal pathologies.
    Moinova H; Leidner RS; Ravi L; Lutterbaugh J; Barnholtz-Sloan JS; Chen Y; Chak A; Markowitz SD; Willis JE
    Cancer Epidemiol Biomarkers Prev; 2012 Apr; 21(4):594-600. PubMed ID: 22315367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy.
    Wang Z; Zhao T; Zhang S; Wang J; Chen Y; Zhao H; Yang Y; Shi S; Chen Q; Liu K
    Biomark Res; 2021 Sep; 9(1):68. PubMed ID: 34488905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-Analysis Based on Nonconvex Regularization.
    Zhang H; Li SJ; Zhang H; Yang ZY; Ren YQ; Xia LY; Liang Y
    Sci Rep; 2020 Apr; 10(1):5755. PubMed ID: 32238826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dickkopf-1 (DKK1) promotes tumor growth via Akt-phosphorylation and independently of Wnt-axis in Barrett's associated esophageal adenocarcinoma.
    Lyros O; Lamprecht AK; Nie L; Thieme R; Götzel K; Gasparri M; Haasler G; Rafiee P; Shaker R; Gockel I
    Am J Cancer Res; 2019; 9(2):330-346. PubMed ID: 30906632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-depth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett's sequence.
    Götzel K; Chemnitzer O; Maurer L; Dietrich A; Eichfeld U; Lyros O; Moulla Y; Niebisch S; Mehdorn M; Jansen-Winkeln B; Vieth M; Hoffmeister A; Gockel I; Thieme R
    BMC Gastroenterol; 2019 Mar; 19(1):38. PubMed ID: 30841855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic review of epigenetic biomarkers in progression from non-dysplastic Barrett's oesophagus to oesophageal adenocarcinoma.
    Nieto T; Tomlinson CL; Dretzke J; Bayliss S; Price MJ; Dilworth M; Beggs AD; Tucker O
    BMJ Open; 2018 Jun; 8(6):e020427. PubMed ID: 29961009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations of Promoter Methylation in WIF-1, RASSF1A, and CDH13 Genes with the Risk and Prognosis of Esophageal Cancer.
    Guo Q; Wang HB; Li YH; Li HF; Li TT; Zhang WX; Xiang SS; Sun ZQ
    Med Sci Monit; 2016 Aug; 22():2816-24. PubMed ID: 27506957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt/β-Catenin Signaling Activation beyond Robust Nuclear β-Catenin Accumulation in Nondysplastic Barrett's Esophagus: Regulation via Dickkopf-1.
    Lyros O; Rafiee P; Nie L; Medda R; Jovanovic N; Otterson MF; Behmaram B; Gockel I; Mackinnon A; Shaker R
    Neoplasia; 2015 Jul; 17(7):598-611. PubMed ID: 26297437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett's-like metaplasia via KLF4.
    Vega ME; Giroux V; Natsuizaka M; Liu M; Klein-Szanto AJ; Stairs DB; Nakagawa H; Wang KK; Wang TC; Lynch JP; Rustgi AK
    Cell Cycle; 2014; 13(24):3857-66. PubMed ID: 25558829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WIF1 causes dysfunction of heart in transgenic mice.
    Lu D; Dong W; Zhang X; Quan X; Bao D; Lu Y; Zhang L
    Transgenic Res; 2013 Dec; 22(6):1179-89. PubMed ID: 23921644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction.
    Clemons NJ; Phillips WA; Lord RV
    Cancer Biol Ther; 2013 Sep; 14(9):782-95. PubMed ID: 23792587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.
    Avanesov A; Blair SS
    Development; 2013 Jan; 140(1):107-16. PubMed ID: 23154411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of epigenetic alterations in the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma.
    Agarwal A; Polineni R; Hussein Z; Vigoda I; Bhagat TD; Bhattacharyya S; Maitra A; Verma A
    Int J Clin Exp Pathol; 2012; 5(5):382-96. PubMed ID: 22808291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling.
    Avanesov A; Honeyager SM; Malicki J; Blair SS
    PLoS Genet; 2012; 8(2):e1002503. PubMed ID: 22383891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cox2 and β-catenin/T-cell factor signaling intestinalize human esophageal keratinocytes when cultured under organotypic conditions.
    Kong J; Crissey MA; Stairs DB; Sepulveda AR; Lynch JP
    Neoplasia; 2011 Sep; 13(9):792-805. PubMed ID: 21969813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical implications of DNA methylation in hepatocellular carcinoma.
    Sceusi EL; Loose DS; Wray CJ
    HPB (Oxford); 2011 Jun; 13(6):369-76. PubMed ID: 21609368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMX2 is epigenetically silenced and suppresses growth in human lung cancer.
    Okamoto J; Hirata T; Chen Z; Zhou HM; Mikami I; Li H; Yagui-Beltran A; Johansson M; Coussens LM; Clement G; Shi Y; Zhang F; Koizumi K; Shimizu K; Jablons D; He B
    Oncogene; 2010 Nov; 29(44):5969-75. PubMed ID: 20697358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.