BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18005433)

  • 1. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining.
    Morgan XC; Ni S; Miranker DP; Iyer VR
    BMC Bioinformatics; 2007 Nov; 8():445. PubMed ID: 18005433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining.
    Navarro C; Lopez FJ; Cano C; Garcia-Alcalde F; Blanco A
    PLoS One; 2014; 9(9):e108065. PubMed ID: 25268582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic detection of statistically overrepresented DNA motif association rules.
    Lin JM; Weng Z
    Genome Inform; 2006; 17(1):124-33. PubMed ID: 17503362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.
    Wang X; Lin P; Ho JWK
    BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs.
    Girgis HZ; Ovcharenko I
    BMC Bioinformatics; 2012 Feb; 13():25. PubMed ID: 22313678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data.
    Huber BR; Bulyk ML
    BMC Bioinformatics; 2006 Apr; 7():229. PubMed ID: 16643658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Database of repetitive elements in complete genomes and data mining using transcription factor binding sites.
    Horng JT; Lin FM; Lin JH; Huang HD; Liu BJ
    IEEE Trans Inf Technol Biomed; 2003 Jun; 7(2):93-100. PubMed ID: 12834164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting transcription factor synergism.
    Hannenhalli S; Levy S
    Nucleic Acids Res; 2002 Oct; 30(19):4278-84. PubMed ID: 12364607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information.
    Makeev VJ; Lifanov AP; Nazina AG; Papatsenko DA
    Nucleic Acids Res; 2003 Oct; 31(20):6016-26. PubMed ID: 14530449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. coTRaCTE predicts co-occurring transcription factors within cell-type specific enhancers.
    van Bömmel A; Love MI; Chung HR; Vingron M
    PLoS Comput Biol; 2018 Aug; 14(8):e1006372. PubMed ID: 30142147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites.
    Xie X; Mikkelsen TS; Gnirke A; Lindblad-Toh K; Kellis M; Lander ES
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7145-50. PubMed ID: 17442748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
    Müller-Molina AJ; Schöler HR; Araúzo-Bravo MJ
    PLoS One; 2012; 7(11):e49086. PubMed ID: 23209563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying pattern-defined regulatory islands in mammalian genomes.
    Cheung TH; Barthel KK; Kwan YL; Liu X
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10116-21. PubMed ID: 17535887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.