These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 18005973)

  • 1. A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones.
    Nowlan NC; Murphy P; Prendergast PJ
    J Biomech; 2008; 41(2):249-58. PubMed ID: 18005973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint.
    Roddy KA; Kelly GM; van Es MH; Murphy P; Prendergast PJ
    J Biomech; 2011 Jan; 44(1):143-9. PubMed ID: 20883996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of mechanosensitive genes during embryonic bone formation.
    Nowlan NC; Prendergast PJ; Murphy P
    PLoS Comput Biol; 2008 Dec; 4(12):e1000250. PubMed ID: 19112485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude.
    Judex S; Lei X; Han D; Rubin C
    J Biomech; 2007; 40(6):1333-9. PubMed ID: 16814792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences.
    Stevens SS; Beaupré GS; Carter DR
    J Orthop Res; 1999 Sep; 17(5):646-53. PubMed ID: 10569472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanobiology and joint conformity regulate endochondral ossification of sesamoids.
    Sarin VK; Carter DR
    J Orthop Res; 2000 Sep; 18(5):706-12. PubMed ID: 11117290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical biophysics: the promotion of skeletal repair by physical forces.
    Aaron RK; Ciombor DM; Wang S; Simon B
    Ann N Y Acad Sci; 2006 Apr; 1068():513-31. PubMed ID: 16831948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periosteal biaxial residual strains correlate with bone specific growth rates in chick embryos.
    Chen JC; Zhao B; Longaker MT; Helms JA; Carter DR
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):453-61. PubMed ID: 18608339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magneto-mechanical stimulation of bone growth in a bonded array of ferromagnetic fibres.
    Markaki AE; Clyne W
    Biomaterials; 2004 Aug; 25(19):4805-15. PubMed ID: 15120527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone remodelling algorithms incorporating both strain and microdamage stimuli.
    McNamara LM; Prendergast PJ
    J Biomech; 2007; 40(6):1381-91. PubMed ID: 16930610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of mechanical loading histories in the development of diarthrodial joints.
    Carter DR; Wong M
    J Orthop Res; 1988; 6(6):804-16. PubMed ID: 3171761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.
    Mi LY; Fritton SP; Basu M; Cowin SC
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of muscular activity on local mineralization patterns in metatarsals of the embryonic mouse.
    Tanck E; Blankevoort L; Haaijman A; Burger EH; Huiskes R
    J Orthop Res; 2000 Jul; 18(4):613-9. PubMed ID: 11052498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone modeling adaptation as a method for promoting development of bone tissue engineered construct in vitro.
    Chunqiu Z; Xizheng Z; Xin D; Weimin Z
    Med Hypotheses; 2007; 69(1):178-81. PubMed ID: 17236725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica).
    Pourlis AF; Antonopoulos J; Magras IN
    Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [In vitro long-term culture of human bone under physiological load conditions].
    Boudriot U; Daume B; Brandt J
    Biomed Tech (Berl); 2004 Dec; 49(12):364-7. PubMed ID: 15655930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling cartilage mechanobiology.
    Carter DR; Wong M
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1461-71. PubMed ID: 14561337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements.
    Mikic B; Johnson TL; Chhabra AB; Schalet BJ; Wong M; Hunziker EB
    J Rehabil Res Dev; 2000; 37(2):127-33. PubMed ID: 10850818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold.
    Stops AJ; McMahon LA; O'Mahoney D; Prendergast PJ; McHugh PE
    J Biomech Eng; 2008 Dec; 130(6):061001. PubMed ID: 19045530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From mechanical stimulus to bone formation: A review.
    Rosa N; Simoes R; Magalhães FD; Marques AT
    Med Eng Phys; 2015 Aug; 37(8):719-28. PubMed ID: 26117332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.