BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18006027)

  • 1. Lipid characterization of a wrinkled sunflower mutant.
    Venegas-Calerón M; Martínez-Force E; Garcés R
    Phytochemistry; 2008 Feb; 69(3):684-91. PubMed ID: 18006027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in lipid status and glass properties in cotyledons of developing sunflower seeds.
    Lehner A; Corbineau F; Bailly C
    Plant Cell Physiol; 2006 Jul; 47(7):818-28. PubMed ID: 16707505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oils from improved high stearic acid sunflower seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Jun; 53(13):5326-30. PubMed ID: 15969513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants.
    Alvarez-Ortega R; Cantisán S; Martínez-Force E; Garcés R
    Lipids; 1997 Aug; 32(8):833-7. PubMed ID: 9270974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines.
    Serrano-Vega MJ; Martínez-Force E; Garcés R
    Lipids; 2005 Apr; 40(4):369-74. PubMed ID: 16028719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of b and giberellic acid on the transformation of lipids in glucids during the germination of sunflower seeds (author's transl)].
    Jiménez F; Donaire JP; Aguilar A
    Rev Esp Fisiol; 1978 Sep; 34(3):269-72. PubMed ID: 725227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of triacylglycerol species during seed germination in fatty acid sunflower (Helianthus annuus) mutants.
    Fernández-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2000 Mar; 48(3):770-4. PubMed ID: 10725147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of lipid reserves in cotyledons of primed and aged sunflower seeds.
    Walters C; Landré P; Hill L; Corbineau F; Bailly C
    Planta; 2005 Oct; 222(3):397-407. PubMed ID: 16136327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of the stearic acid content in high-oleic sunflower (Helianthus annuus) seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 Dec; 54(25):9383-8. PubMed ID: 17147422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid characterization in vegetative tissues of high saturated fatty acid sunflower mutants.
    Cantisán S; Martínez-Force E; Alvarez-Ortega R; Garcés R
    J Agric Food Chem; 1999 Jan; 47(1):78-82. PubMed ID: 10563853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of a high-palmitoleic acid Helianthus annuus mutant.
    Salas JJ; Martínez-Force E; Garcés R
    Plant Physiol Biochem; 2004 May; 42(5):373-81. PubMed ID: 15191739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases.
    Lunn D; Smith GA; Wallis JG; Browse J
    Plant Physiol; 2018 Jun; 177(2):553-564. PubMed ID: 29678860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in acyl-coenzyme A pools in sunflower seeds with modified fatty acid composition.
    Aznar-Moreno JA; Martínez-Force E; Venegas-Calerón M; Garcés R; Salas JJ
    Phytochemistry; 2013 Mar; 87():39-50. PubMed ID: 23280039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L.).
    Sebei K; Ouerghi Z; Kallel H; Boukhchina S
    C R Biol; 2006 Sep; 329(9):719-25. PubMed ID: 16945838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid characterization of a high-stearic sunflower mutant displaying a seed stearic acid gradient.
    Fernandez-Moya V; Martínez-Force E; Garcés R
    J Agric Food Chem; 2006 May; 54(10):3612-6. PubMed ID: 19127733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Cd2+ on lipid components of sunflower (Helianthus annuus L.) seeds.
    Aggarwal M; Luthra YP; Arora SK
    Plant Foods Hum Nutr; 1995 Feb; 47(2):149-55. PubMed ID: 7792263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in triacylglycerol composition during ripening of sea buckthorn (Hippophaë rhamnoides L.) seeds.
    Tsydendambaev VD; Vereshchagin AG
    J Agric Food Chem; 2003 Feb; 51(5):1278-83. PubMed ID: 12590468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature effect on a high stearic acid sunflower mutant.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Phytochemistry; 2002 Jan; 59(1):33-7. PubMed ID: 11754941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of near-isogenic sunflower varieties differing in seed oil traits.
    Hajduch M; Casteel JE; Tang S; Hearne LB; Knapp S; Thelen JJ
    J Proteome Res; 2007 Aug; 6(8):3232-41. PubMed ID: 17580850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.