These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18006324)

  • 1. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L.
    Zdunek-Zastocka E
    Plant Physiol Biochem; 2008 Jan; 46(1):19-28. PubMed ID: 18006324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress.
    Zdunek-Zastocka E; Sobczak M
    Plant Physiol Biochem; 2013 Oct; 71():57-66. PubMed ID: 23876699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activity pattern and gene expression profile of aldehyde oxidase during the development of Pisum sativum seeds.
    Zdunek-Zastocka E
    Plant Sci; 2010 Nov; 179(5):543-8. PubMed ID: 21802613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression analysis of an aldehyde oxidase gene in Arachis hygogaea L.
    Yang L; Liang J; Li H; Li L
    J Environ Biol; 2009 Jan; 30(1):93-8. PubMed ID: 20112869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions.
    Zdunek-Zastocka E; Omarov RT; Koshiba T; Lips HS
    J Exp Bot; 2004 Jun; 55(401):1361-9. PubMed ID: 15073210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions.
    Zdunek E; Lips SH
    J Exp Bot; 2001 Jun; 52(359):1269-76. PubMed ID: 11432945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana.
    Sekimoto H; Seo M; Kawakami N; Komano T; Desloire S; Liotenberg S; Marion-Poll A; Caboche M; Kamiya Y; Koshiba T
    Plant Cell Physiol; 1998 Apr; 39(4):433-42. PubMed ID: 9615466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development.
    García-Martínez JL; López-Diaz I; Sánchez-Beltrán MJ; Phillips AL; Ward DA; Gaskin P; Hedden P
    Plant Mol Biol; 1997 Apr; 33(6):1073-84. PubMed ID: 9154988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium Alters the Metabolism and Perception of Abscisic Acid in
    Zdunek-Zastocka E; Michniewska B; Pawlicka A; Grabowska A
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene].
    Wang LQ; Wang Y; Dong Y; Wang WB
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):632-5. PubMed ID: 15969098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.
    Edwards A; Vincken JP; Suurs LC; Visser RG; Zeeman S; Smith A; Martin C
    Plant Cell; 2002 Aug; 14(8):1767-85. PubMed ID: 12172021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, characterisation and expression of a cDNA for pea cholinephosphate cytidylyltransferase.
    Jones PL; Willey DL; Gacesa P; Harwood JL
    Plant Mol Biol; 1998 May; 37(1):179-85. PubMed ID: 9620275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.
    Serova TA; Tikhonovich IA; Tsyganov VE
    J Plant Physiol; 2017 May; 212():29-44. PubMed ID: 28242415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea (Pisum sativum).
    Buchner P; Rochat C; Wuillème S; Boutin JP
    Plant Mol Biol; 2002 May; 49(2):171-86. PubMed ID: 11999373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield.
    Dang HQ; Tran NQ; Gill SS; Tuteja R; Tuteja N
    Plant Mol Biol; 2011 May; 76(1-2):19-34. PubMed ID: 21365356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression.
    Robertson M; Chandler PM
    Plant Mol Biol; 1994 Nov; 26(3):805-16. PubMed ID: 7999996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.
    Leterrier M; Corpas FJ; Barroso JB; Sandalio LM; del Río LA
    Plant Physiol; 2005 Aug; 138(4):2111-23. PubMed ID: 16055677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves.
    Corpas FJ; Palma JM; Sandalio LM; Valderrama R; Barroso JB; Del Río LA
    J Plant Physiol; 2008 Sep; 165(13):1319-30. PubMed ID: 18538891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots.
    Fan W; Zhao M; Li S; Bai X; Li J; Meng H; Mu Z
    BMC Plant Biol; 2016 Apr; 16():99. PubMed ID: 27101806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.
    Bogdanov IV; Shenkarev ZO; Finkina EI; Melnikova DN; Rumynskiy EI; Arseniev AS; Ovchinnikova TV
    BMC Plant Biol; 2016 Apr; 16():107. PubMed ID: 27137920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.