BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18006325)

  • 1. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds.
    Varisi VA; Camargos LS; Aguiar LF; Christofoleti RM; Medici LO; Azevedo RA
    Plant Physiol Biochem; 2008 Jan; 46(1):11-8. PubMed ID: 18006325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanisms after short- and long-term perturbed lysine biosynthesis in the aspartate pathway: the need for isogenes in Arabidopsis thaliana.
    Van Bochaute P; Novoa A; Ballet S; Rognes SE; Angenon G
    Physiol Plant; 2013 Dec; 149(4):449-60. PubMed ID: 23556418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed characterization and early nitrogen metabolism performance of seedlings from Altiplano and coastal ecotypes of Quinoa.
    Pinto-Irish K; Coba de la Peña T; Ostria-Gallardo E; Ibáñez C; Briones V; Vergara A; Alvarez R; Castro C; Sanhueza C; Castro PA; Bascuñán-Godoy L
    BMC Plant Biol; 2020 Jul; 20(1):343. PubMed ID: 32693791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm.
    Wang X; Stumpf DK; Larkins BA
    Plant Physiol; 2001 Apr; 125(4):1778-87. PubMed ID: 11299358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum.
    Cahyanto MN; Kawasaki H; Nagashio M; Fujiyama K; Seki T
    Microbiology (Reading); 2006 Jan; 152(Pt 1):105-112. PubMed ID: 16385120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum.
    Cremer J; Treptow C; Eggeling L; Sahm H
    J Gen Microbiol; 1988 Dec; 134(12):3221-9. PubMed ID: 3151991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents.
    Clark TJ; Lu Y
    Plant Physiol; 2015 Aug; 168(4):1512-26. PubMed ID: 26063505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into carbon and nitrogen metabolism and antioxidant potential during vegetative phase in quinoa (Chenopodium quinoa Willd.).
    Sonali ; Grewal SK; Gill RK
    Protoplasma; 2022 Sep; 259(5):1301-1319. PubMed ID: 35064825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of aspartate in Mycobacterium smegmatis.
    Sritharan V; Wheeler PR; Ratledge C
    Eur J Biochem; 1989 Apr; 180(3):587-93. PubMed ID: 2496980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase.
    Yang QQ; Yu WH; Wu HY; Zhang CQ; Sun SS; Liu QQ
    Plant Biotechnol J; 2021 Mar; 19(3):490-501. PubMed ID: 32945115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Shaul O; Galili G
    Plant Mol Biol; 1993 Nov; 23(4):759-68. PubMed ID: 8251629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis.
    Dong X; Zhao Y; Zhao J; Wang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):873-85. PubMed ID: 27033538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the L-lysine biosynthetic pathway in the obligate methylotroph Methylophilus methylotrophus.
    Gunji Y; Tsujimoto N; Shimaoka M; Ogawa-Miyata Y; Sugimoto S; Yasueda H
    Biosci Biotechnol Biochem; 2004 Jul; 68(7):1449-60. PubMed ID: 15277749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.
    Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T
    J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
    Jakobsen OM; Brautaset T; Degnes KF; Heggeset TM; Balzer S; Flickinger MC; Valla S; Ellingsen TE
    Appl Environ Microbiol; 2009 Feb; 75(3):652-61. PubMed ID: 19060158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa.
    Thanapornpoonpong SN; Vearasilp S; Pawelzik E; Gorinstein S
    J Agric Food Chem; 2008 Dec; 56(23):11464-70. PubMed ID: 19006392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development.
    Karchi H; Shaul O; Galili G
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2577-81. PubMed ID: 8146157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions.
    Miranda-Apodaca J; Agirresarobe A; Martínez-Goñi XS; Yoldi-Achalandabaso A; Pérez-López U
    Plant Physiol Biochem; 2020 Oct; 155():725-734. PubMed ID: 32862022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds.
    Ruales J; Nair BM
    Plant Foods Hum Nutr; 1992 Jan; 42(1):1-11. PubMed ID: 1546052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartate kinase and homoserine dehydrogenase of Candida utilis.
    Benítez JA; Delgado JM; Herrera LS
    Folia Microbiol (Praha); 1983; 28(3):149-56. PubMed ID: 6307841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.