BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18006375)

  • 1. Automatic fitting procedures for EPR spectra of disordered systems: matrix diagonalization and perturbation methods applied to fluorocarbon radicals.
    Lund A; Andersson P; Eriksson J; Hallin J; Johansson T; Jonsson R; Löfgren H; Paulin C; Tell A
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 May; 69(5):1294-300. PubMed ID: 18006375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic fitting to 'powder' EPR spectra of coupled paramagnetic species employing Feynman's theorem.
    Lund A; Gustafsson H; Maruani J; Shiotani M
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(4):830-5. PubMed ID: 16458575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the geometry and magnetic parameters of fluorinated radicals by simulation of powder ESR spectra and DFT calculations: the case of the radical RCF2CF2* in nafion perfluorinated ionomers.
    Lund A; Macomber LD; Danilczuk M; Stevens JE; Schlick S
    J Phys Chem B; 2007 Aug; 111(32):9484-91. PubMed ID: 17645326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling EPR powder spectra using numerical diagonalization of the spin hamiltonian.
    Morin G; Bonnin D
    J Magn Reson; 1999 Feb; 136(2):176-99. PubMed ID: 9986760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rigorous evaluation of spin-Hamiltonian parameters and linewidth from a polycrystalline EPR spectrum.
    Misra SK
    J Magn Reson; 1999 Sep; 140(1):179-88. PubMed ID: 10479561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters.
    Svistunenko DA; Jones GA
    Phys Chem Chem Phys; 2009 Aug; 11(31):6600-13. PubMed ID: 19639135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of electron paramagnetic resonance parameters for paramagnetic molybdenum complexes. 1. Method validation on small and medium-sized systems.
    Fritscher J; Hrobarik P; Kaupp M
    J Phys Chem B; 2007 May; 111(17):4616-29. PubMed ID: 17408258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angular variation of electron paramagnetic resonance spectrum: simulation of a polycrystalline EPR spectrum.
    Misra SK
    J Magn Reson; 1999 Mar; 137(1):83-92. PubMed ID: 10053135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of the optical and EPR spectra for VO2+ in LiKSO4 crystals.
    Wang F; Wen-Chen Z; Lv H
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):513-5. PubMed ID: 18295535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel sparse component analysis approach to free radical EPR spectra decomposition.
    Chang C; Ren J; Fung PC; Hung YS; Shen JG; Chan FH
    J Magn Reson; 2005 Aug; 175(2):242-55. PubMed ID: 15922638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of EPR parameters for paramagnetic molybdenum complexes. II. Larger MoV systems relevant to molybdenum enzymes.
    Fritscher J; Hrobárik P; Kaupp M
    Inorg Chem; 2007 Oct; 46(20):8146-61. PubMed ID: 17725345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the anisotropic hyperfine interaction on the 14N ENDOR and the ESEEM orientation-disordered spectra.
    Benetis NP; Dikanov SA
    J Magn Reson; 2005 Jul; 175(1):124-45. PubMed ID: 15878298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the interpretation of continuous wave electron spin resonance spectra of tempo-palmitate in 5-cyanobiphenyl.
    Zerbetto M; Polimeno A; Cimino P; Barone V
    J Chem Phys; 2008 Jan; 128(2):024501. PubMed ID: 18205453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifrequency simulations of the EPR spectra of lipid spin labels in membranes.
    Livshits VA; Kurad D; Marsh D
    J Magn Reson; 2006 May; 180(1):63-71. PubMed ID: 16448829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional hyperfine sublevel correlation spectroscopy: powder features for S=1/2, I=1.
    Maryasov AG; Bowman MK
    J Magn Reson; 2006 Mar; 179(1):120-35. PubMed ID: 16337820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplification of complex EPR spectra by cepstral analysis.
    Das R; Bowman MK; Levanon H; Norris JR
    J Phys Chem A; 2007 May; 111(21):4650-7. PubMed ID: 17487988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the EPR parameters of glycine-derived radicals: the case of N-acetylglycyl in the N-acetylglycine single-crystal environment.
    Kacprzak S; Reviakine R; Kaupp M
    J Phys Chem B; 2007 Feb; 111(4):811-9. PubMed ID: 17249825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-processing of EPR spectra by convolution filtering: calculation of a harmonics' series and automatic separation of fast-motion components from spin-label EPR spectra.
    Smirnov AI
    J Magn Reson; 2008 Jan; 190(1):154-9. PubMed ID: 17967556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electron spin resonance study on the free radicals produced from aclacinomycin a and its derivatives: analysis of hyperfine structure of the spectra by means of molecular orbital method.
    Kodama M; Aida M; Nagata C; Oki T; Matsuzawa Y
    Cancer Biochem Biophys; 1983; 6(4):243-7. PubMed ID: 6311402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ESR characteristics of one-electron reduced thymine in monomer, oligomer, and polymer derivatives.
    Bernhard WA; Patrzalek AZ
    Radiat Res; 1989 Mar; 117(3):379-94. PubMed ID: 2538858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.